13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Eosinophilic inflammation in COPD: from an inflammatory marker to a treatable trait

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The heterogeneity of chronic obstructive pulmonary disease (COPD) creates many diagnostic, prognostic, treatment and management challenges, as the pathogenesis of COPD is highly complex and the underlying cellular and molecular mechanisms remain poorly understood. A reliable, easy-to-measure, clinically relevant biomarker would be invaluable for improving outcomes for patients. International and national guidance for COPD suggests using blood eosinophil counts as a biomarker to help estimate likely responsiveness to inhaled corticosteroids (ICS) and, potentially, to aid effective management strategies. However, with the mechanism underlying the association between higher eosinophil levels and ICS effect unknown, use of the blood eosinophil count in COPD continues to be widely debated by the respiratory community.

          Two international meetings involving respiratory medicine specialists, immunologists and primary and secondary care clinicians were held in November 2018 and March 2019, facilitated and funded by GlaxoSmithKline plc. The aims of these meetings were to explore the role of eosinophils in the disease processes of COPD and as prognostic and diagnostic markers, and to identify areas of deficient knowledge that warrant further research. The consensus views of the attendees on key topics, contextualised with current literature, are summarised in this review article, with the aim of aiding ongoing research into the disease processes of COPD and the development of biomarkers to aid clinical management.

          Under certain conditions, eosinophils can be recruited to the lung, and increasing evidence supports a role for eosinophilic inflammation in some patients with COPD. Infiltration of eosinophils across the bronchial vascular epithelium into the airways is promoted by the actions of immunoregulatory cells, cytokines and chemokines, where eosinophil-mediated inflammation is driven by the release of proinflammatory mediators.

          Multiple studies and two meta-analyses suggest peripheral blood eosinophils may correlate positively with an increased likelihood of exacerbation reduction benefits of ICS in COPD. The studies, however, vary in design and duration and by which eosinophil levels are viewed as predictive of an ICS response. Generally, the response was seen when eosinophil levels were 100–300 cells/µL (or higher), levels which are traditionally viewed within the normal range. Some success with interleukin-5-targeted therapy suggests that the eosinophilic phenotype may be a treatable trait.

          The use of biomarkers could help to stratify treatment for COPD—the goal of which is to improve patient outcomes. Some evidence supports eosinophils as a potential biomarker of a treatable trait in COPD, though it is still lacking and research is ongoing. A unified consensus and a practical, accessible and affordable method of utilising any biomarker for COPD was thought to be of most importance. Challenges around its utilisation may include presenting a clear and pragmatic rationale for biomarker-driven therapy, guidance on ICS withdrawal between primary and secondary care and a lack of financial incentives supporting broad application in clinical practice. Future treatments should, perhaps, be more targeted rather than assuming the primary disease label (COPD or asthma) will define treatment response.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          T-helper type 2-driven inflammation defines major subphenotypes of asthma.

          T-helper type 2 (Th2) inflammation, mediated by IL-4, IL-5, and IL-13, is considered the central molecular mechanism underlying asthma, and Th2 cytokines are emerging therapeutic targets. However, clinical studies increasingly suggest that asthma is heterogeneous. To determine whether this clinical heterogeneity reflects heterogeneity in underlying molecular mechanisms related to Th2 inflammation. Using microarray and polymerase chain reaction analyses of airway epithelial brushings from 42 patients with mild-to-moderate asthma and 28 healthy control subjects, we classified subjects with asthma based on high or low expression of IL-13-inducible genes. We then validated this classification and investigated its clinical implications through analyses of cytokine expression in bronchial biopsies, markers of inflammation and remodeling, responsiveness to inhaled corticosteroids, and reproducibility on repeat examination. Gene expression analyses identified two evenly sized and distinct subgroups, "Th2-high" and "Th2-low" asthma (the latter indistinguishable from control subjects). These subgroups differed significantly in expression of IL-5 and IL-13 in bronchial biopsies and in airway hyperresponsiveness, serum IgE, blood and airway eosinophilia, subepithelial fibrosis, and airway mucin gene expression (all P < 0.03). The lung function improvements expected with inhaled corticosteroids were restricted to Th2-high asthma, and Th2 markers were reproducible on repeat evaluation. Asthma can be divided into at least two distinct molecular phenotypes defined by degree of Th2 inflammation. Th2 cytokines are likely to be a relevant therapeutic target in only a subset of patients with asthma. Furthermore, current models do not adequately explain non-Th2-driven asthma, which represents a significant proportion of patients and responds poorly to current therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease.

            Clinical asthma is very widely assumed to be the net result of excessive inflammation driven by aberrant T-helper-2 (Th2) immunity that leads to inflamed, remodelled airways and then functional derangement that, in turn, causes symptoms. This notion of disease is actually poorly supported by data, and there are substantial discrepancies and very poor correlation between inflammation, damage, functional impairment, and degree of symptoms. Furthermore, this problem is compounded by the poor understanding of the heterogeneity of clinical disease. Failure to recognise and discover the underlying mechanisms of these major variants or endotypes of asthma is, arguably, the major intellectual limitation to progress at present. Fortunately, both clinical research and animal models are very well suited to dissecting the cellular and molecular basis of disease endotypes. This approach is already suggesting entirely novel pathways to disease-eg, alternative macrophage specification, steroid refractory innate immunity, the interleukin-17-regulatory T-cell axis, epidermal growth factor receptor co-amplification, and Th2-mimicking but non-T-cell, interleukins 18 and 33 dependent processes that can offer unexpected therapeutic opportunities for specific patient endotypes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucocorticoid resistance in inflammatory diseases.

              Glucocorticoid resistance or insensitivity is a major barrier to the treatment of several common inflammatory diseases-including chronic obstructive pulmonary disease and acute respiratory distress syndrome; it is also an issue for some patients with asthma, rheumatoid arthritis, and inflammatory bowel disease. Several molecular mechanisms of glucocorticoid resistance have now been identified, including activation of mitogen-activated protein (MAP) kinase pathways by certain cytokines, excessive activation of the transcription factor activator protein 1, reduced histone deacetylase-2 (HDAC2) expression, raised macrophage migration inhibitory factor, and increased P-glycoprotein-mediated drug efflux. Patients with glucocorticoid resistance can be treated with alternative broad-spectrum anti-inflammatory treatments, such as calcineurin inhibitors and other immunomodulators, or novel anti-inflammatory treatments, such as inhibitors of phosphodiesterase 4 or nuclear factor kappaB, although these drugs are all likely to have major side-effects. An alternative treatment strategy is to reverse glucocorticoid resistance by blocking its underlying mechanisms. Some examples of this approach are inhibition of p38 MAP kinase, use of vitamin D to restore interleukin-10 response, activation of HDAC2 expression by use of theophylline, antioxidants, or phosphoinositide-3-kinase-delta inhibitors, and inhibition of macrophage migration inhibitory factor and P-glycoprotein.
                Bookmark

                Author and article information

                Journal
                Thorax
                Thorax
                thoraxjnl
                thorax
                Thorax
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                0040-6376
                1468-3296
                February 2021
                29 October 2020
                : 76
                : 2
                : 188-195
                Affiliations
                [1 ] departmentResearch & Development , GlaxoSmithKline plc , Middlesex, UK
                [2 ] departmentNuffield Department of Medicine , University of Oxford , Oxford, UK
                [3 ] departmentDepartment of Respiratory Medicine and Center for Translational Immunology (CTI) , University Medical Center Utrecht , Utrecht, The Netherlands
                [4 ] departmentInstitute of Cellular Medicine, NIHR Biomedical Research Centre for Aging and Department of Respiratory Medicine , Newcastle upon Tyne NHS Foundation Trust , Newcastle upon Tyne, UK
                Author notes
                [Correspondence to ] Dr Antony De Soyza, Newcastle upon Tyne Hospitals Trust, Newcastle upon Tyne, UK; anthony.de-soyza@ 123456newcastle.ac.uk
                Author information
                http://orcid.org/0000-0002-9993-2478
                Article
                thoraxjnl-2020-215167
                10.1136/thoraxjnl-2020-215167
                7815887
                33122447
                b3486ec2-4083-40d7-9e64-4a52b402a263
                © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 29 April 2020
                : 28 July 2020
                : 01 October 2020
                Funding
                Funded by: GlaxoSmithKline plc.;
                Award ID: Not applicable
                Categories
                State of the Art Review
                1506
                2313
                Custom metadata
                unlocked

                Surgery
                asthma,copd mechanisms,copd pathology,copd pharmacology,cytokine biology,eosinophil biology
                Surgery
                asthma, copd mechanisms, copd pathology, copd pharmacology, cytokine biology, eosinophil biology

                Comments

                Comment on this article