3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Distinctive Nuclear Features of Dinoflagellates with A Particular Focus on Histone and Histone-Replacement Proteins

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dinoflagellates are important eukaryotic microorganisms that play critical roles as producers and grazers, and cause harmful algal blooms. The unusual nuclei of dinoflagellates “dinokaryon” have led researchers to investigate their enigmatic nuclear features. Their nuclei are unusual in terms of their permanently condensed nucleosome-less chromatin, immense genome, low protein to DNA ratio, guanine-cytosine rich methylated DNA, and unique mitosis process. Furthermore, dinoflagellates are the only known group of eukaryotes that apparently lack histone proteins. Over the course of evolution, dinoflagellates have recruited other proteins, e.g., histone-like proteins (HLPs), from bacteria and dinoflagellates/viral nucleoproteins (DVNPs) from viruses as histone substitutes. Expression diversity of these nucleoproteins has greatly influenced the chromatin structure and gene expression regulation in dinoflagellates. Histone replacement proteins (HLPs and DVNPs) are hypothesized to perform a few similar roles as histone proteins do in other eukaryotes, i.e., gene expression regulation and repairing DNA. However, their role in bulk packaging of DNA is not significant as low amounts of proteins are associated with the gigantic genome. This review intends to summarize the discoveries encompassing unique nuclear features of dinoflagellates, particularly focusing on histone and histone replacement proteins. In addition, a comprehensive view of the evolution of dinoflagellate nuclei is presented.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: not found
          • Article: not found

          A review of harmful algal blooms and their apparent global increase*

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Diversity and evolutionary history of plastids and their hosts.

            By synthesizing data from individual gene phylogenies, large concatenated gene trees, and other kinds of molecular, morphological, and biochemical markers, we begin to see the broad outlines of a global phylogenetic tree of eukaryotes. This tree is apparently composed of five large assemblages, or "supergroups." Plants and algae, or more generally eukaryotes with plastids (the photosynthetic organelle of plants and algae and their nonphotosynthetic derivatives) are scattered among four of the five supergroups. This is because plastids have had a complex evolutionary history involving several endosymbiotic events that have led to their transmission from one group to another. Here, the history of the plastid and of its various hosts is reviewed with particular attention to the number and nature of the endosymbiotic events that led to the current distribution of plastids. There is accumulating evidence to support a single primary origin of plastids from a cyanobacterium (with one intriguing possible exception in the little-studied amoeba Paulinella), followed by the diversification of glaucophytes, red and green algae, with plants evolving from green algae. Following this, some of these algae were themselves involved in secondary endosymbiotic events. The best current evidence indicates that two independent secondary endosymbioses involving green algae gave rise to euglenids and chlorarachniophytes, whereas a single endosymbiosis with a red algae gave rise to the chromalveolates, a diverse group including cryptomonads, haptophytes, heterokonts, and alveolates. Dinoflagellates (alveolates) have since taken up other algae in serial secondary and tertiary endosymbioses, raising a number of controversies over the origin of their plastids, and by extension, the recently discovered cryptic plastid of the closely related apicomplexan parasites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Symbiodinium Transcriptomes: Genome Insights into the Dinoflagellate Symbionts of Reef-Building Corals

              Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts. Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation.
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                14 December 2018
                December 2018
                : 6
                : 4
                : 128
                Affiliations
                [1 ]Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao, 266003, China; sadafriaz91@ 123456yahoo.com (S.R.); themicrobiologist@ 123456hu.edu.pk (Z.N.); khanhr39@ 123456yahoo.com (S.K.); liuyuan@ 123456ouc.edu.cn (Y.L.); lhx@ 123456stu.ouc.edu.cn (H.L.)
                [2 ]Department of Microbiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
                [3 ]Department of Microbiology, Hazara University, Mansehra 21120, Pakistan
                Author notes
                [* ]Correspondence: suizhengh@ 123456ouc.edu.cn ; Tel./Fax: +86-532-8203-1128
                Article
                microorganisms-06-00128
                10.3390/microorganisms6040128
                6313786
                30558155
                b37b0ab5-a1b1-45c8-bafa-a46be7add690
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 November 2018
                : 11 December 2018
                Categories
                Review

                dinokaryon,chromatin,histones,histone-like proteins,dinoflagellate/viral nucleoproteins,evolution

                Comments

                Comment on this article