66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In spite of the current optimal therapy, the mortality of patients with ischemic heart disease (IHD) remains high, particularly in cases with diabetes mellitus (DM) as a co-morbidity. Myocardial infarct size is a major determinant of prognosis in IHD patients, and development of a novel strategy to limit infarction is of great clinical importance. Ischemic preconditioning (PC), postconditioning (PostC) and their mimetic agents have been shown to reduce infarct size in experiments using healthy animals. However, a variety of pharmacological agents have failed to demonstrate infarct size limitation in clinical trials. One of the possible reasons for the discrepancy between the results of animal experiments and clinical trials is that co-morbidities, including DM, modified myocardial responses to ischemia/reperfusion and to cardioprotective agents. Here we summarize observations of the effects of DM on myocardial infarct size and ischemic PC and PostC and discuss perspectives for protection of DM hearts.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning.

          Therapeutic strategies to protect the ischemic myocardium have been studied extensively. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate lethal tissue injury, a process termed "reperfusion injury." Ischemia/reperfusion injury may lead to myocardial infarction, cardiac arrhythmias, and contractile dysfunction. Ischemic preconditioning of myocardium is a well described adaptive response in which brief exposure to ischemia/reperfusion before sustained ischemia markedly enhances the ability of the heart to withstand a subsequent ischemic insult. Additionally, the application of brief repetitive episodes of ischemia/reperfusion at the immediate onset of reperfusion, which has been termed "postconditioning," reduces the extent of reperfusion injury. Ischemic pre- and postconditioning share some but not all parts of the proposed signal transduction cascade, including the activation of survival protein kinase pathways. Most experimental studies on cardioprotection have been undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of other disease processes. However, ischemic heart disease in humans is a complex disorder caused by or associated with known cardiovascular risk factors including hypertension, hyperlipidemia, diabetes, insulin resistance, atherosclerosis, and heart failure; additionally, aging is an important modifying condition. In these diseases and aging, the pathological processes are associated with fundamental molecular alterations that can potentially affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Among many other possible mechanisms, for example, in hyperlipidemia and diabetes, the pathological increase in reactive oxygen and nitrogen species and the use of the ATP-sensitive potassium channel inhibitor insulin secretagogue antidiabetic drugs and, in aging, the reduced expression of connexin-43 and signal transducer and activator of transcription 3 may disrupt major cytoprotective signaling pathways thereby significantly interfering with the cardioprotective effect of pre- and postconditioning. The aim of this review is to show the potential for developing cardioprotective drugs on the basis of endogenous cardioprotection by pre- and postconditioning (i.e., drug applied as trigger or to activate signaling pathways associated with endogenous cardioprotection) and to review the evidence that comorbidities and aging accompanying coronary disease modify responses to ischemia/reperfusion and the cardioprotection conferred by preconditioning and postconditioning. We emphasize the critical need for more detailed and mechanistic preclinical studies that examine car-dioprotection specifically in relation to complicating disease states. These are now essential to maximize the likelihood of successful development of rational approaches to therapeutic protection for the majority of patients with ischemic heart disease who are aged and/or have modifying comorbid conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular biology of the incretin system.

            Glucagon-like peptide-1 (GLP-1) is an incretin hormone that enhances glucose-stimulated insulin secretion and exerts direct and indirect actions on the cardiovascular system. GLP-1 and its related incretin hormone, glucose-dependent insulinotropic polypeptide, are rapidly inactivated by the enzyme dipeptidyl peptidase 4 (DPP-4), a key determinant of incretin bioactivity. Two classes of medications that enhance incretin action, GLP-1 receptor (GLP-1R) agonists and DPP-4 inhibitors, are used for the treatment of type 2 diabetes mellitus. We review herein the cardiovascular biology of GLP-1R agonists and DPP-4 inhibitors, including direct and indirect effects on cardiomyocytes, blood vessels, adipocytes, the control of blood pressure, and postprandial lipoprotein secretion. Both GLP-1R activation and DPP-4 inhibition exert multiple cardioprotective actions in preclinical models of cardiovascular dysfunction, and short-term studies in human subjects appear to demonstrate modest yet beneficial actions on cardiac function in subjects with ischemic heart disease. Incretin-based agents control body weight, improve glycemic control with a low risk of hypoglycemia, decrease blood pressure, inhibit the secretion of intestinal chylomicrons, and reduce inflammation in preclinical studies. Nevertheless, there is limited information on the cardiovascular actions of these agents in patients with diabetes and established cardiovascular disease. Hence, a more complete understanding of the cardiovascular risk to benefit ratio of incretin-based therapies will require completion of long-term cardiovascular outcome studies currently underway in patients with type 2 diabetes mellitus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling.

              Clinical studies have reported that metformin reduces cardiovascular end points of type 2 diabetic subjects by actions that cannot solely be attributed to glucose-lowering effects. The therapeutic effects of metformin have been reported to be mediated by its activation of AMP-activated protein kinase (AMPK), a metabolite sensing protein kinase whose activation following myocardial ischemia has been suggested to be an endogenous protective signaling mechanism. We investigated the potential cardioprotective effects of a single, low-dose metformin treatment (i.e., 286-fold less than the maximum antihyperglycemic dose) in a murine model of myocardial ischemia-reperfusion (I/R) injury. Nondiabetic and diabetic (db/db) mice were subjected to transient myocardial ischemia for a period of 30 min followed by reperfusion. Metformin (125 microg/kg) or vehicle (saline) was administered either before ischemia or at the time of reperfusion. Administration of metformin before ischemia or at reperfusion decreased myocardial injury in both nondiabetic and diabetic mice. Importantly, metformin did not alter blood glucose levels. During early reperfusion, treatment with metformin augmented I/R-induced AMPK activation and significantly increased endothelial nitric oxide (eNOS) phosphorylation at residue serine 1177. These findings provide important information that myocardial AMPK activation by metformin following I/R sets into motion events, including eNOS activation, which ultimately lead to cardioprotection.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Diabetol
                Cardiovasc Diabetol
                Cardiovascular Diabetology
                BioMed Central
                1475-2840
                2012
                13 June 2012
                : 11
                : 67
                Affiliations
                [1 ]Second Department of Internal Medicine, Sapporo Medical University School of Medicine, South-1 West-16, Chuo-ku, Sapporo 060-8543, Japan
                Article
                1475-2840-11-67
                10.1186/1475-2840-11-67
                3461466
                22694800
                b3808b49-deb8-46a4-9208-3d84164a4eb9
                Copyright ©2012 Miki et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 June 2012
                : 6 June 2012
                Categories
                Review

                Endocrinology & Diabetes
                diabetes mellitus,postconditioning,preconditioning,infarct size
                Endocrinology & Diabetes
                diabetes mellitus, postconditioning, preconditioning, infarct size

                Comments

                Comment on this article