17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Book Chapter: not found
      Recombinant Gene Expression 

      Heterologous Protein Expression by Lactococcus lactis

      other

      Read this book at

      Buy book Bookmark
          There is no author summary for this book yet. Authors can add summaries to their books on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10.

          Genetically modified Lactococcus lactis secreting interleukin 10 provides a therapeutic approach for inflammatory bowel disease. However, the release of such genetically modified organisms through clinical use raises safety concerns. In an effort to address this problem, we replaced the thymidylate synthase gene thyA of L. lactis with a synthetic human IL10 gene. This thyA- hIL10+ L. lactis strain produced human IL-10 (hIL-10), and when deprived of thymidine or thymine, its viability dropped by several orders of magnitude, essentially preventing its accumulation in the environment. The biological containment system and the bacterium's capacity to secrete hIL-10 were validated in vivo in pigs. Our approach is a promising one for transgene containment because, in the unlikely event that the engineered L. lactis strain acquired an intact thyA gene from a donor such as L. lactis subsp. cremoris, the transgene would be eliminated from the genome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci.

            Human papillomavirus type 16 (HPV-16) is the major causative agent of cervical cancer. To date, vaccine strategies against HPV-16 are based on the ability of the E7 oncoprotein to elicit an immune response against this virus. In this study, the use of an inducible or a constitutive system to produce the HPV-16 E7 protein in Lactococcus lactis, a non-pathogenic and non-invasive Gram-positive bacterium, was compared. The highest E7 production was obtained with the inducible system. When mice were immunized intranasally with recombinant lactococci expressing either inducible or constitutive E7, an antigen-specific cellular response (i.e. secretion of IL2 and IFN-gamma cytokines) was evoked and was substantially higher in mice receiving L. lactis expressing E7 with the inducible system. As bacterial antigen location may influence the immune response, recombinant L. lactis strains that produced E7 in three cellular locations, intracellular, secreted or cell-wall-anchored were evaluated. The highest immune response was elicited by administration of L. lactis producing an inducible cell-wall-anchored form of E7 protein. These promising results represent a step towards the development of a new, safe mucosal vector to treat HPV-related cervical cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intranasal immunization with recombinant Lactococcus lactis secreting murine interleukin-12 enhances antigen-specific Th1 cytokine production.

              Interleukin-12 (IL-12), a heterodimeric cytokine, plays an important role in cellular immunity to several bacterial, viral, and parasitic infections and has adjuvant activity when it is codelivered with DNA vaccines. IL-12 has also been used with success in cancer immunotherapy treatments. However, systemic IL-12 therapy has been limited by high levels of toxicity. We describe here inducible expression and secretion of IL-12 in the food-grade lactic acid bacterium Lactococcus lactis. IL-12 was expressed as two separate polypeptides (p35-p40) or as a single recombinant polypeptide (scIL-12). The biological activity of IL-12 produced by the recombinant L. lactis strain was confirmed in vitro by its ability to induce gamma interferon (IFN-gamma) production by mouse splenocytes. Local administration of IL-12-producing strains at the intranasal mucosal surface resulted in IFN-gamma production in mice. The activity was greater with the single polypeptide scIL-12. An antigen-specific cellular response (i.e., secretion of Th1 cytokines, IL-2, and IFN-gamma) elicited by a recombinant L. lactis strain displaying a cell wall-anchored human papillomavirus type 16 E7 antigen was dramatically increased by coadministration with an L. lactis strain secreting IL-12 protein. Our data show that IL-12 is produced and secreted in an active form by L. lactis and that the strategy which we describe can be used to enhance an antigen-specific immune response and to stimulate local mucosal immunity.
                Bookmark

                Author and book information

                Book Chapter
                2012
                November 21 2011
                : 155-165
                10.1007/978-1-61779-433-9_8
                b38236a8-d5f5-4bbd-a771-b4a5de6094c7
                History

                Comments

                Comment on this book

                Book chapters

                Similar content4,410

                Cited by1