47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Glucocorticoid Receptors in Dexamethasone-Induced Apoptosis of Neuroprogenitor Cells in the Hippocampus of Rat Pups

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Dexamethasone (Dex) has been used to reduce inflammation in preterm infants with assistive ventilation and to prevent chronic lung diseases. However, Dex treatment results in adverse effects on the brain. Since the hippocampus contains a high density of glucocorticoid receptors (GCRs), we hypothesized that Dex affects neurogenesis in the hippocampus through inflammatory mediators. Methods. Albino Wistar rat pups first received a single dose of Dex (0.5 mg/kg) on postnatal day 1 (P1) and were sacrificed on P2, P3, P5, and P7. One group of Dex-treated pups (Dex-treated D1D2) was given mifepristone (RU486, a GCR antagonist) on P1 and sacrificed on P2. Hippocampi were isolated for western blot analysis, TUNEL, cleaved-caspase 3 staining for cell counts, and morphological assessment. Control pups received normal saline (NS). Results. Dex reduced the developmental gain in body weight, but had no effect on brain weight. In the Dex-treated D1D2 group, apoptotic cells increased in number based on TUNEL and cleaved-caspase 3 staining. Most of the apoptotic cells expressed the neural progenitor cell marker nestin. Dex-induced apoptosis in P1 pups was markedly reduced (60%) by pretreatment with RU486, indicating the involvement of GCRs. Conclusion. Early administration of Dex results in apoptosis of neural progenitor cells in the hippocampus and this is mediated through GCRs.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Multipotent progenitor cells in the adult dentate gyrus.

          Neurogenesis persists in the adult dentate gyrus of rodents throughout the life of the organism. The factors regulating proliferation, survival, migration, and differentiation of neuronal progenitors are now being elucidated. Cells from the adult hippocampus can be propagated, cloned in vitro, and induced to differentiate into neurons and glial cells. Cells cultured from the adult rodent hippocampus can be genetically marked and transplanted back to the adult brain, where they survive and differentiate into mature neurons and glial cells. Although multipotent stem cells exist in the adult rodent dentate gyrus, their biological significance remains elusive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy.

            Glucocorticoids (GCs) are widely used in the treatment of allergic skin conditions despite having numerous side effects. Here we use Cre/loxP-engineered tissue- and cell-specific and function-selective GC receptor (GR) mutant mice to identify responsive cell types and molecular mechanisms underlying the antiinflammatory activity of GCs in contact hypersensitivity (CHS). CHS was repressed by GCs only at the challenge phase, i.e., during reexposure to the hapten. Inactivation of the GR gene in keratinocytes or T cells of mutant mice did not attenuate the effects of GCs, but its ablation in macrophages and neutrophils abolished downregulation of the inflammatory response. Moreover, mice expressing a DNA binding-defective GR were also resistant to GC treatment. The persistent infiltration of macrophages and neutrophils in these mice is explained by an impaired repression of inflammatory cytokines and chemokines such as IL-1beta, monocyte chemoattractant protein-1, macrophage inflammatory protein-2, and IFN-gamma-inducible protein 10. In contrast TNF-alpha repression remained intact. Consequently, injection of recombinant proteins of these cytokines and chemokines partially reversed suppression of CHS by GCs. These studies provide evidence that in contact allergy, therapeutic action of corticosteroids is in macrophages and neutrophils and that dimerization GR is required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence

              Depression during pregnancy and the postpartum period is a growing health problem, which affects up to 20% of women. Currently, selective serotonin reuptake inhibitor (SSRIs) medications are commonly used for treatment of maternal depression. Unfortunately, there is very little research on the long-term effect of maternal depression and perinatal SSRI exposure on offspring development. Therefore, the aim of this study was to determine the role of exposure to fluoxetine during development on affective-like behaviors and hippocampal neurogenesis in adolescent offspring in a rodent model of maternal depression. To do this, gestationally stressed and non-stressed Sprague-Dawley rat dams were treated with either fluoxetine (5 mg/kg/day) or vehicle beginning on postnatal day 1 (P1). Adolescent male and female offspring were divided into 4 groups: 1) prenatal stress+fluoxetine exposure, 2) prenatal stress+vehicle, 3) fluoxetine exposure alone, and 4) vehicle alone. Adolescent offspring were assessed for anxiety-like behavior using the Open Field Test and depressive-like behavior using the Forced Swim Test. Brains were analyzed for endogenous markers of hippocampal neurogenesis via immunohistochemistry. Results demonstrate that maternal fluoxetine exposure reverses the reduction in immobility evident in prenatally stressed adolescent offspring. In addition, maternal fluoxetine exposure reverses the decrease in hippocampal cell proliferation and neurogenesis in maternally stressed adolescent offspring. This research provides important evidence on the long-term effect of fluoxetine exposure during development in a model of maternal adversity.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2013
                14 January 2013
                : 2013
                : 628094
                Affiliations
                1Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
                2Department of Pediatrics, College of Medicine, National Cheng Kung University, Tainan, Taiwan
                Author notes

                Academic Editor: Kuen-Jer Tsai

                Article
                10.1155/2013/628094
                3557631
                23401645
                b383579e-45cd-4c34-aaab-d5564f88fece
                Copyright © 2013 Chun-I Sze et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 October 2012
                : 17 December 2012
                Categories
                Research Article

                Immunology
                Immunology

                Comments

                Comment on this article