33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The MRE11–RAD50–NBS1 Complex Conducts the Orchestration of Damage Signaling and Outcomes to Stress in DNA Replication and Repair

      1 , 1 , 2
      Annual Review of Biochemistry
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Genomic instability in disease and its fidelity in health depend on the DNA damage response (DDR), regulated in part from the complex of meiotic recombination 11 homolog 1 (MRE11), ATP-binding cassette–ATPase (RAD50), and phosphopeptide-binding Nijmegen breakage syndrome protein 1 (NBS1). The MRE11–RAD50–NBS1 (MRN) complex forms a multifunctional DDR machine. Within its network assemblies, MRN is the core conductor for the initial and sustained responses to DNA double-strand breaks, stalled replication forks, dysfunctional telomeres, and viral DNA infection. MRN can interfere with cancer therapy and is an attractive target for precision medicine. Its conformations change the paradigm whereby kinases initiate damage sensing. Delineated results reveal kinase activation, posttranslational targeting, functional scaffolding, conformations storing binding energy and en-abling access, interactions with hub proteins such as replication protein A (RPA), and distinct networks at DNA breaks and forks. MRN biochemistry provides prototypic insights into how it initiates, implements, and regulates multifunctional responses to genomic stress. </p>

          Related collections

          Most cited references165

          • Record: found
          • Abstract: found
          • Article: not found

          Human CtIP promotes DNA end resection.

          In the S and G2 phases of the cell cycle, DNA double-strand breaks (DSBs) are processed into single-stranded DNA, triggering ATR-dependent checkpoint signalling and DSB repair by homologous recombination. Previous work has implicated the MRE11 complex in such DSB-processing events. Here, we show that the human CtIP (RBBP8) protein confers resistance to DSB-inducing agents and is recruited to DSBs exclusively in the S and G2 cell-cycle phases. Moreover, we reveal that CtIP is required for DSB resection, and thereby for recruitment of replication protein A (RPA) and the protein kinase ATR to DSBs, and for the ensuing ATR activation. Furthermore, we establish that CtIP physically and functionally interacts with the MRE11 complex, and that both CtIP and MRE11 are required for efficient homologous recombination. Finally, we reveal that CtIP has sequence homology with Sae2, which is involved in MRE11-dependent DSB processing in yeast. These findings establish evolutionarily conserved roles for CtIP-like proteins in controlling DSB resection, checkpoint signalling and homologous recombination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of DNA repair throughout the cell cycle.

            The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alternative lengthening of telomeres: models, mechanisms and implications.

              Unlimited cellular proliferation depends on counteracting the telomere attrition that accompanies DNA replication. In human cancers this usually occurs through upregulation of telomerase activity, but in 10-15% of cancers - including some with particularly poor outcome - it is achieved through a mechanism known as alternative lengthening of telomeres (ALT). ALT, which is dependent on homologous recombination, is therefore an important target for cancer therapy. Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALT. This has enabled development of a rapid assay of ALT activity levels and the construction of molecular models of ALT.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                June 20 2018
                June 20 2018
                : 87
                : 1
                : 263-294
                Affiliations
                [1 ]Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA;,
                [2 ]Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
                Article
                10.1146/annurev-biochem-062917-012415
                6076887
                29709199
                b38556f0-a430-4a33-a6bd-562a7a4f718f
                © 2018
                History

                Comments

                Comment on this article