18
views
1
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selenium-coated nanostructured lipid carriers used for oral delivery of berberine to accomplish a synergic hypoglycemic effect

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diabetes mellitus is an incurable metabolic disorder that seriously threatens human health. At present, there is no effective medication available to defeat it. This work intended to develop selenium-coated nanostructured lipid carriers (SeNLCs) for enhancing the oral bioavailability and the curative effect of berberine, an antidiabetic phytomedicine. Berberine-loaded SeNLCs (BB-SeNLCs) were prepared by hot-melt dispersion/homogenization procedure followed by in situ reduction. BB-SeNLCs were characterized by particle size, morphology, entrapment efficiency (EE) and in vitro release. Pharmacokinetics of berberine solution, berberine-loaded NLCs (BB-NLCs) and BB-SeNLCs were studied in Sprague Dawley rats administered by oral gavage. The prepared BB-SeNLCs were around 160 nm in particle size with an EE of 90%. In addition, BB-SeNLCs exhibited a better sustained release of berberine compared to the plain NLCs. After oral administration, BB-SeNLCs greatly enhanced the oral bioavailability of berberine, which was approximately 6.63 times as much as that of berberine solution. The hypoglycemic effect of BB-SeNLCs was also significantly superior to that of BB-NLCs and berberine solution. It turned out that sustained drug release and good intestinal absorption, plus the synergy of selenium, were basically responsible for enhanced oral bioavailability and hypoglycemic effect. Our findings show that SeNLCs are promising nanocarriers for oral delivery of berberine to strengthen the antidiabetic action.

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Berberine improves glucose metabolism through induction of glycolysis.

          Berberine, a botanical alkaloid used to control blood glucose in type 2 diabetes in China, has recently been reported to activate AMPK. However, it is not clear how AMPK is activated by berberine. In this study, activity and action mechanism of berberine were investigated in vivo and in vitro. In dietary obese rats, berberine increased insulin sensitivity after 5-wk administration. Fasting insulin and HOMA-IR were decreased by 46 and 48%, respectively, in the rats. In cell lines including 3T3-L1 adipocytes, L6 myotubes, C2C12 myotubes, and H4IIE hepatocytes, berberine was found to increase glucose consumption, 2-deoxyglucose uptake, and to a less degree 3-O-methylglucose (3-OMG) uptake independently of insulin. The insulin-induced glucose uptake was enhanced by berberine in the absence of change in IRS-1 (Ser307/312), Akt, p70 S6, and ERK phosphorylation. AMPK phosphorylation was increased by berberine at 0.5 h, and the increase remained for > or =16 h. Aerobic and anaerobic respiration were determined to understand the mechanism of berberine action. The long-lasting phosphorylation of AMPK was associated with persistent elevation in AMP/ATP ratio and reduction in oxygen consumption. An increase in glycolysis was observed with a rise in lactic acid production. Berberine exhibited no cytotoxicity, and it protected plasma membrane in L6 myotubes in the cell culture. These results suggest that berberine enhances glucose metabolism by stimulation of glycolysis, which is related to inhibition of glucose oxidation in mitochondria. Berberine-induced AMPK activation is likely a consequence of mitochondria inhibition that increases the AMP/ATP ratio.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Good Caco-2 cell culture practices.

            The human Caco-2 cells differentiate spontaneously in culture forming monolayers of mature intestinal enterocytes which have been used as a model of the intestinal barrier for in vitro toxicology studies. Reproducibility problems often reported in literature have been generally ascribed to different culture-related conditions, such as the type of animal serum used, the supplements added to the culture media, the passage number and the source of cell clones. The Caco-2 cell culture protocol here described has been recently optimized in our laboratory, producing a homogeneous and highly polarized monolayer of cells which display many of the characteristics of the intestinal enterocytes. This protocol differs from standard protocols mainly because Caco-2 cells are subcultured when they reach just 50% of confluence, instead of 80%, retaining a high proliferation potential. When this cell population is seeded at high density on filter inserts differentiates almost synchronously and much more homogenously. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biotinylated liposomes as potential carriers for the oral delivery of insulin.

              This study aimed to explore biotinylated liposomes (BLPs) as novel carriers to enhance the oral delivery of insulin. Biotinylation was achieved by incorporating biotin-conjugated phospholipids into the liposome membranes. A significant hypoglycemic effect and enhanced absorption were observed after treating diabetic rats with the BLPs with a relative bioavailability of 12.09% and 8.23%, based on the measurement of the pharmacologic effect and the blood insulin level, respectively; this achieved bioavailability was approximately double that of conventional liposomes. The significance of the biotinylation was confirmed by the facilitated absorption of the BLPs through receptor-mediated endocytosis, as well as by the improved physical stability of the liposomes. Increased cellular uptake and quick gastrointestinal transport further verified the ability of the BLPs to enhance absorption. These results provide a proof of concept that BLPs can be used as potential carriers for the oral delivery of insulin. Diabetes remains a major source of mortality in the Western world, and advances in its management are expected to have substantial socioeconomic impact. In this paper, biotinylated liposomes were utilized as carriers of insulin for local delivery, demonstrating the feasibility of this approach in a rat model. © 2014.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2017
                06 December 2017
                : 12
                : 8671-8680
                Affiliations
                [1 ]Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University
                [2 ]Henan Vocational College of Applied Technology, Kaifeng
                [3 ]Henan Provincial Institute of Food and Drug Control, Zhengzhou, People’s Republic of China
                Author notes
                Correspondence: Juntao Yin, Department of Pharmaceutics, Huaihe Hospital Affiliated to Henan University, No 1 Baobei Road, Kaifeng 475000, People’s Republic of China, Tel +86 378 2390 6304, Email yinjuntao811@ 123456163.com
                Article
                ijn-12-8671
                10.2147/IJN.S144615
                5724418
                29263662
                b38eada2-2a64-482b-94bb-53d16687feac
                © 2017 Yin et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                berberine,diabetes mellitus,nanostructured lipid carriers,selenium,bioavailability

                Comments

                Comment on this article