6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The determination factors of left-right asymmetry disorders- a short review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Laterality defects in humans, situs inversus and heterotaxy, are rare disorders, with an incidence of 1:8000 to 1:10 000 in the general population, and a multifactorial etiology. It has been proved that 1.44/10 000 of all cardiac problems are associated with malformations of left-right asymmetry and heterotaxy accounts for 3% of all congenital heart defects. It is considered that defects of situs appear due to genetic and environmental factors. Also, there is evidence that the ciliopathies (defects of structure or function) are involved in development abnormalities. Over 100 genes have been reported to be involved in left-right patterning in model organisms, but only a few are likely to candidate for left-right asymmetry defects in humans. Left-right asymmetry disorders are genetically heterogeneous and have variable manifestations (from asymptomatic to serious clinical problems). The discovery of the right mechanism of left-right development will help explain the clinical complexity and may contribute to a therapy of these disorders.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein.

          Microtubule-dependent motor, murine KIF3B, was disrupted by gene targeting. The null mutants did not survive beyond midgestation, exhibiting growth retardation, pericardial sac ballooning, and neural tube disorganization. Prominently, the left-right asymmetry was randomized in the heart loop and the direction of embryonic turning. lefty-2 expression was either bilateral or absent. Furthermore, the node lacked monocilia while the basal bodies were present. Immunocytochemistry revealed KIF3B localization in wild-type nodal cilia. Video microscopy showed that these cilia were motile and generated a leftward flow. These data suggest that KIF3B is essential for the left-right determination through intraciliary transportation of materials for ciliogenesis of motile primary cilia that could produce a gradient of putative morphogen along the left-right axis in the node.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vertebrate primary cilium in development, homeostasis, and disease.

            Cilia are complex structures that have garnered interest because of their roles in vertebrate development and their involvement in human genetic disorders. In contrast to multicellular invertebrates in which cilia are restricted to specific cell types, these organelles are found almost ubiquitously in vertebrate cells, where they serve a diverse set of signaling functions. Here, we highlight properties of vertebrate cilia, with particular emphasis on their relationship with other subcellular structures, and explore the physiological consequences of ciliary dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation.

              Primary ciliary dyskinesia (PCD) is a genetically heterogeneous autosomal recessive disorder characterized by recurrent infections of the respiratory tract associated with the abnormal function of motile cilia. Approximately half of individuals with PCD also have alterations in the left-right organization of their internal organ positioning, including situs inversus and situs ambiguous (Kartagener's syndrome). Here, we identify an uncharacterized coiled-coil domain containing a protein, CCDC40, essential for correct left-right patterning in mouse, zebrafish and human. In mouse and zebrafish, Ccdc40 is expressed in tissues that contain motile cilia, and mutations in Ccdc40 result in cilia with reduced ranges of motility. We further show that CCDC40 mutations in humans result in a variant of PCD characterized by misplacement of the central pair of microtubules and defective assembly of inner dynein arms and dynein regulatory complexes. CCDC40 localizes to motile cilia and the apical cytoplasm and is required for axonemal recruitment of CCDC39, disruption of which underlies a similar variant of PCD.
                Bookmark

                Author and article information

                Journal
                Clujul Med
                Clujul Med
                CM
                Clujul Medical
                Iuliu Hatieganu University of Medicine and Pharmacy
                1222-2119
                2066-8872
                2017
                25 April 2017
                : 90
                : 2
                : 139-146
                Affiliations
                Genetics Department, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
                Author notes
                Address for correspondence: catanaandreea@ 123456gmail.com
                Article
                cm-90-139
                10.15386/cjmed-701
                5433564
                28559696
                b38ecb52-d631-4dbc-8d67-071bc71c7c84
                Copyright @ 2017

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

                History
                : 04 July 2016
                : 02 October 2016
                : 23 November 2016
                Categories
                Review
                Genetics

                situs inversus,heterotaxy syndrome,left-right asymmetry determination factors,nodal,kartagener syndrome

                Comments

                Comment on this article