26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulating the p66shc Signaling Pathway with Protocatechuic Acid Protects the Intestine from Ischemia-Reperfusion Injury and Alleviates Secondary Liver Damage

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Intestinal ischemia-reperfusion (I/R) injury is a serious clinical pathophysiological process that may result in acute local intestine and remote liver injury. Protocatechuic acid (PCA), which has been widely studied as a polyphenolic compound, induces expression of antioxidative genes that combat oxidative stress and cell apoptosis. In this study, we investigated the effect of PCA pretreatment for protecting intestinal I/R-induced local intestine and remote liver injury in mice. Intestinal I/R was established by superior mesenteric artery occlusion for 45 min followed by reperfusion for 90 min. After the reperfusion period, PCA pretreatment markedly alleviated intestine and liver injury induced by intestinal I/R as indicated by histological alterations, decreases in serological damage parameters and nuclear factor-kappa B and phospho-foxo3a protein expression levels, and increases in glutathione, glutathione peroxidase, manganese superoxide dismutase protein expression, and Bcl-xL protein expression in the intestine and liver. These parameters were accompanied by PCA-induced adaptor protein p66shc suppression. These results suggest that PCA has a significant protective effect in the intestine and liver following injury induced by intestinal I/R. The protective effect of PCA may be attributed to the suppression of p66shc and the regulation of p66shc-related antioxidative and antiapoptotic factors.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Intestinal mucosal lesion in low-flow states. I. A morphological, hemodynamic, and metabolic reappraisal.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway.

            Genetic determinants of longevity include the forkhead-related transcription factor DAF-16 in the worm Caenorhabditis elegans and the p66shc locus in mice. We demonstrate that p66shc regulates intracellular oxidant levels in mammalian cells and that hydrogen peroxide can negatively regulate forkhead activity. In p66shc-/- cells, the activity of the mammalian forkhead homolog FKHRL1 is increased and redox-dependent forkhead inactivation is reduced. In addition, expression of FKHRL1 results in an increase in both hydrogen peroxide scavenging and oxidative stress resistance. These results demonstrate an important functional relation between three distinct elements linked to aging: forkhead proteins, p66shc, and intracellular oxidants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet.

              Several experimental and clinical studies have shown that oxidized low-density lipoprotein and oxidation-sensitive mechanisms are central in the pathogenesis of vascular dysfunction and atherogenesis. Here, we have used p66(Shc-/-) and WT mice to investigate the effects of high-fat diet on both systemic and tissue oxidative stress and the development of early vascular lesions. To date, the p66(Shc-/-) mouse is the unique genetic model of increased resistance to oxidative stress and prolonged life span in mammals. Computer-assisted image analysis revealed that chronic 21% high-fat treatment increased the aortic cumulative early lesion area by approximately 21% in WT mice and only by 3% in p66(Shc-/-) mice. Early lesions from p66(Shc-/-) mice had less content of macrophage-derived foam cells and apoptotic vascular cells, in comparison to the WT. Furthermore, in p66(Shc-/-) mice, but not WT mice, we found a significant reduction of systemic and tissue oxidative stress (assessed by isoprostanes, plasma low-density lipoprotein oxidizability, and the formation of arterial oxidation-specific epitopes). These results support the concept that p66(Shc-/-) may play a pivotal role in controlling systemic oxidative stress and vascular diseases. Therefore, p66(Shc) might represent a molecular target for therapies against vascular diseases.
                Bookmark

                Author and article information

                Journal
                ScientificWorldJournal
                ScientificWorldJournal
                TSWJ
                The Scientific World Journal
                Hindawi Publishing Corporation
                1537-744X
                2014
                16 March 2014
                : 2014
                : 387640
                Affiliations
                1Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian 116023, China
                2Department of Pharmacology, Dalian Medical University, Dalian 116044, China
                Author notes

                Academic Editors: E. de Bree and M. de Luca

                Author information
                http://orcid.org/0000-0003-3065-0525
                http://orcid.org/0000-0002-9029-3649
                http://orcid.org/0000-0002-4221-6630
                http://orcid.org/0000-0002-2064-9750
                Article
                10.1155/2014/387640
                3976807
                24757420
                b38f1bf3-1e2f-4649-9365-cb42f4e6b14f
                Copyright © 2014 Lingfei Ma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 November 2013
                : 16 February 2014
                Funding
                Funded by: http://dx.doi.org/10.13039/501100001809 National Natural Science Foundation of China
                Award ID: 81171850
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article