6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reprogramming of Adult Peripheral Blood Cells into Human Induced Pluripotent Stem Cells as a Safe and Accessible Source of Endothelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Human induced pluripotent stem cells free of vector and transgene sequences.

          Reprogramming differentiated human cells to induced pluripotent stem (iPS) cells has applications in basic biology, drug development, and transplantation. Human iPS cell derivation previously required vectors that integrate into the genome, which can create mutations and limit the utility of the cells in both research and clinical applications. We describe the derivation of human iPS cells with the use of nonintegrating episomal vectors. After removal of the episome, iPS cells completely free of vector and transgene sequences are derived that are similar to human embryonic stem (ES) cells in proliferative and developmental potential. These results demonstrate that reprogramming human somatic cells does not require genomic integration or the continued presence of exogenous reprogramming factors and removes one obstacle to the clinical application of human iPS cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis in cancer, vascular, rheumatoid and other disease.

            J Folkman (1995)
            Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Angiogenesis: an organizing principle for drug discovery?

              Angiogenesis--the process of new blood-vessel growth--has an essential role in development, reproduction and repair. However, pathological angiogenesis occurs not only in tumour formation, but also in a range of non-neoplastic diseases that could be classed together as 'angiogenesis-dependent diseases'. By viewing the process of angiogenesis as an 'organizing principle' in biology, intriguing insights into the molecular mechanisms of seemingly unrelated phenomena might be gained. This has important consequences for the clinical use of angiogenesis inhibitors and for drug discovery, not only for optimizing the treatment of cancer, but possibly also for developing therapeutic approaches for various diseases that are otherwise unrelated to each other.
                Bookmark

                Author and article information

                Journal
                Stem Cells Dev
                Stem Cells Dev
                scd
                Stem Cells and Development
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1547-3287
                1557-8534
                01 January 2018
                01 January 2018
                01 January 2018
                : 27
                : 1
                : 10-22
                Affiliations
                [ 1 ]Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University , Brno, Czech Republic.
                [ 2 ]International Clinical Research Center, St. Anne's University Hospital Brno , Brno, Czech Republic.
                [ 3 ]I. Surgery Department, St. Anne's University Hospital Brno , Brno, Czech Republic.
                Author notes
                Address correspondence to: Pavel Simara, PhD, Centre for Biomedical Image Analysis, Faculty of Informatics, Masaryk University University Campus Bohunice A3, Kamenice 5, 62500 Brno, Czech Republic

                E-mail: p.simara@ 123456mail.muni.cz
                Article
                10.1089/scd.2017.0132
                10.1089/scd.2017.0132
                5756468
                29117787
                b3c426ff-1ce3-4723-afab-3c3113fe192b
                © Pavel Simara et al. 2017; Published by Mary Ann Liebert, Inc.

                This article is available under the Creative Commons License CC-BY-NC ( http://creativecommons.org/licenses/by-nc/4.0). This license permits non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited. Permission only needs to be obtained for commercial use and can be done via RightsLink.

                History
                : 29 June 2017
                : 18 October 2017
                Page count
                Figures: 5, References: 73, Pages: 13
                Categories
                Original Research Reports

                induced pluripotent stem cells,endothelial differentiation,peripheral blood mononuclear cells

                Comments

                Comment on this article