Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Novel antihypertensive lactoferrin-derived peptides produced by Kluyveromyces marxianus: gastrointestinal stability profile and in vivo angiotensin I-converting enzyme (ACE) inhibition.

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Novel antihypertensive peptides released by Kluyveromyces marxianus from bovine lactoferrin (LF) have been identified. K. marxianus LF permeate was fractionated by semipreparative high performance liquid chromatography and 35 peptides contained in the angiotensin I-converting enzyme (ACE)-inhibitory fractions were identified by using an ion trap mass spectrometer. On the basis of peptide abundance and common structural features, six peptides were chemically synthesized. Four of them (DPYKLRP, PYKLRP, YKLRP, and GILRP) exerted in vitro inhibitory effects on ACE activity and effectively decreased systolic blood pressure after oral administration to spontaneously hypertensive rats (SHRs). Stability against gastrointestinal enzymes suggested that the sequence LRP could contribute to the in vivo effects of parental peptides. Finally, there were reductions in circulating ACE activity and angiotensin II level in SHRs after either DPYKLRP or LRP intake, thus confirming ACE inhibition as the in vivo mechanism for their antihypertensive effect.

      Related collections

      Author and article information

      Affiliations
      [1 ] Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
      Journal
      J. Agric. Food Chem.
      Journal of agricultural and food chemistry
      1520-5118
      0021-8561
      Feb 19 2014
      : 62
      : 7
      24476136
      10.1021/jf4053868

      Comments

      Comment on this article