36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      p38 MAPK mediates calcium oxalate crystal-induced tight junction disruption in distal renal tubular epithelial cells

      research-article
      1 , 2 , a , 1 , 3
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We examined whether p38 MAPK plays role in calcium oxalate monohydrate (COM) crystal-induced tight junction disruption. Polarized MDCK cells were pretreated with or without 20 μM SB239063 (p38 MAPK inhibitor) for 2-h, and then incubated with 100 μg/ml COM crystals for up to 48-h. Western blotting showed increased level of phospho-p38, not total p38, in COM-treated cells, whereas SB239063 pretreatment successfully maintained phospho-p38 at its basal level. COM crystals also caused decreased levels of two tight junction proteins, zonula occludens-1 (ZO-1) and occludin. Immunofluorescence study revealed disruption of tight junction, redistribution, and dissociation of ZO-1 and occludin. Moreover, transepithelial resistance (TER) showed defective barrier function, whereas Western blotting for Na +/K +-ATPase-α1 revealed defective fence function of tight junction in COM-treated cells. All these expression and functional defects were successfully prevented by SB239063 pretreatment. These findings indicate that COM crystals cause tight junction disruption in distal renal tubular epithelial cells through p38 MAPK activation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia

          A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crosstalk of tight junction components with signaling pathways.

            Tight junctions (TJs) regulate the passage of ions and molecules through the paracellular pathway in epithelial and endothelial cells. TJs are highly dynamic structures whose degree of sealing varies according to external stimuli, physiological and pathological conditions. In this review we analyze how the crosstalk of protein kinase C, protein kinase A, myosin light chain kinase, mitogen-activated protein kinases, phosphoinositide 3-kinase and Rho signaling pathways is involved in TJ regulation triggered by diverse stimuli. We also report how the phosphorylation of the main TJ components, claudins, occludin and ZO proteins, impacts epithelial and endothelial cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Signalling to and from tight junctions.

              Tight junctions have long been regarded as simple barriers that separate compartments of different compositions, but recent research indicates that different types of signalling proteins and transduction pathways are associated with these junctions. They receive and convert signals from the cell interior to regulate junction assembly and function, and transmit signals to the cell interior to modulate gene expression and cell behaviour.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 January 2013
                2013
                : 3
                : 1041
                Affiliations
                [1 ]Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
                [2 ]Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
                [3 ]Center for Research in Complex Systems Science, Mahidol University , Bangkok, Thailand
                Author notes
                Article
                srep01041
                10.1038/srep01041
                3540397
                23304432
                b3d6426f-8b13-4d40-a204-34d70fd02842
                Copyright © 2013, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 20 April 2012
                : 06 December 2012
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article