37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glutamine Acts as a Neuroprotectant against DNA Damage, Beta-Amyloid and H 2O 2-Induced Stress

      research-article
      * ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glutamine is the most abundant free amino acid in the human blood stream and is ‘conditionally essential’ to cells. Its intracellular levels are regulated both by the uptake of extracellular glutamine via specific transport systems and by its intracellular synthesis by glutamine synthetase (GS). Adding to the regulatory complexity, when extracellular glutamine is reduced GS protein levels rise. Unfortunately, this excess GS can be maladaptive. GS overexpression is neurotoxic especially if the cells are in a low-glutamine medium. Similarly, in low glutamine, the levels of multiple stress response proteins are reduced rendering cells hypersensitive to H 2O 2, zinc salts and DNA damage. These altered responses may have particular relevance to neurodegenerative diseases of aging. GS activity and glutamine levels are lower in the Alzheimer's disease (AD) brain, and a fraction of AD hippocampal neurons have dramatically increased GS levels compared with control subjects. We validated the importance of these observations by showing that raising glutamine levels in the medium protects cultured neuronal cells against the amyloid peptide, Aβ. Further, a 10-day course of dietary glutamine supplementation reduced inflammation-induced neuronal cell cycle activation, tau phosphorylation and ATM-activation in two different mouse models of familial AD while raising the levels of two synaptic proteins, VAMP2 and synaptophysin. Together, our observations suggest that healthy neuronal cells require both intracellular and extracellular glutamine, and that the neuroprotective effects of glutamine supplementation may prove beneficial in the treatment of AD.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Bidirectional transport of amino acids regulates mTOR and autophagy.

          Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Changes in DNA repair during aging

            DNA is a precious molecule. It encodes vital information about cellular content and function. There are only two copies of each chromosome in the cell, and once the sequence is lost no replacement is possible. The irreplaceable nature of the DNA sets it apart from other cellular molecules, and makes it a critical target for age-related deterioration. To prevent DNA damage cells have evolved elaborate DNA repair machinery. Paradoxically, DNA repair can itself be subject to age-related changes and deterioration. In this review we will discuss the changes in efficiency of mismatch repair (MMR), base excision repair (BER), nucleotide excision repair (NER) and double-strand break (DSB) repair systems during aging, and potential changes in DSB repair pathway usage that occur with age. Mutations in DNA repair genes and premature aging phenotypes they cause have been reviewed extensively elsewhere, therefore the focus of this review is on the comparison of DNA repair mechanisms in young versus old.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reimagining Alzheimer's disease--an age-based hypothesis.

              The historical roots of Alzheimer's disease provide a sound conceptual basis for linking the behavioral and neurological symptoms of the disease with the frequently associated pathology of amyloid plaques and neurofibrillary tangles. Out of these roots has grown the "amyloid cascade hypothesis"--a vision of the etiology of Alzheimer's that has spurred the discovery of many important insights into the neurobiology of the disease. Despite these successes, the wealth of new data now available to biomedical researchers urges a full review of the origins of Alzheimer's, and such a reconsideration is offered here. It begins with the most widely accepted risk factor for developing Alzheimer's disease: age. Then, for an individual to progress from normal age-appropriate cognitive function to a condition where the full palette of clinical symptoms is expressed, three key steps are envisioned: (1) an initiating injury, (2) a chronic neuroinflammatory response, and (3) a discontinuous cellular change of state involving most, if not all, of the cell types of the brain. The amyloid cascade is integrated into this sequence, but reconfigured as an amyloid deposition cycle. In this way, the pathology of amyloid plaques is envisioned as highly correlated with, but mechanistically distinct from, the three obligatory steps leading to Alzheimer's disease. The implications of this new model are discussed with respect to our current diagnostic criteria, and suggestions are put forward for expanding our future research efforts.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                8 March 2012
                : 7
                : 3
                : e33177
                Affiliations
                [1]Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
                Case Western Reserve University, United States of America
                Author notes

                Conceived and designed the experiments: JC KH. Performed the experiments: JC. Analyzed the data: JC KH. Wrote the paper: JC KH.

                Article
                PONE-D-11-18935
                10.1371/journal.pone.0033177
                3297635
                22413000
                b3db252b-41ef-46f6-89c7-7eb278b440c3
                Chen and Herrup. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 September 2011
                : 5 February 2012
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Molecular Cell Biology
                Cellular Types
                Signal Transduction
                Signaling Cascades
                Neuroscience
                Chemistry
                Organic Chemistry
                Organic Acids
                Medicine
                Neurology
                Dementia

                Uncategorized
                Uncategorized

                Comments

                Comment on this article