1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Detecting and estimating head motion in brain PET acquisitions using raw time-of-flight PET data

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Theory of Edge Detection

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

            A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be included as an open source module in the Bioconductor project.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Reconstructing a 3D structure from serial histological sections

                Bookmark

                Author and article information

                Journal
                Physics in Medicine and Biology
                Phys. Med. Biol.
                IOP Publishing
                0031-9155
                1361-6560
                August 21 2015
                August 21 2015
                August 06 2015
                : 60
                : 16
                : 6441-6458
                Article
                10.1088/0031-9155/60/16/6441
                26248198
                b3ea5f31-4cfa-43f8-a418-da7d23d5aefa
                © 2015

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article