19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Effective Filter for IBD Detection in Large Data Sets

      research-article
      * , , ,
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identity by descent (IBD) inference is the task of computationally detecting genomic segments that are shared between individuals by means of common familial descent. Accurate IBD detection plays an important role in various genomic studies, ranging from mapping disease genes to exploring ancient population histories. The majority of recent work in the field has focused on improving the accuracy of inference, targeting shorter genomic segments that originate from a more ancient common ancestor. The accuracy of these methods, however, is achieved at the expense of high computational cost, resulting in a prohibitively long running time when applied to large cohorts. To enable the study of large cohorts, we introduce SpeeDB, a method that facilitates fast IBD detection in large unphased genotype data sets. Given a target individual and a database of individuals that potentially share IBD segments with the target, SpeeDB applies an efficient opposite-homozygous filter, which excludes chromosomal segments from the database that are highly unlikely to be IBD with the corresponding segments from the target individual. The remaining segments can then be evaluated by any IBD detection method of choice. When examining simulated individuals sharing 4 cM IBD regions, SpeeDB filtered out 99.5% of genomic regions from consideration while retaining 99% of the true IBD segments. Applying the SpeeDB filter prior to detecting IBD in simulated fourth cousins resulted in an overall running time that was 10,000x faster than inferring IBD without the filter and retained 99% of the true IBD segments in the output.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of genetic inheritance in a family quartet by whole-genome sequencing.

          We analyzed the whole-genome sequences of a family of four, consisting of two siblings and their parents. Family-based sequencing allowed us to delineate recombination sites precisely, identify 70% of the sequencing errors (resulting in > 99.999% accuracy), and identify very rare single-nucleotide polymorphisms. We also directly estimated a human intergeneration mutation rate of approximately 1.1 x 10(-8) per position per haploid genome. Both offspring in this family have two recessive disorders: Miller syndrome, for which the gene was concurrently identified, and primary ciliary dyskinesia, for which causative genes have been previously identified. Family-based genome analysis enabled us to narrow the candidate genes for both of these Mendelian disorders to only four. Our results demonstrate the value of complete genome sequencing in families.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Variation in genome-wide mutation rates within and between human families.

            J.B.S. Haldane proposed in 1947 that the male germline may be more mutagenic than the female germline. Diverse studies have supported Haldane's contention of a higher average mutation rate in the male germline in a variety of mammals, including humans. Here we present, to our knowledge, the first direct comparative analysis of male and female germline mutation rates from the complete genome sequences of two parent-offspring trios. Through extensive validation, we identified 49 and 35 germline de novo mutations (DNMs) in two trio offspring, as well as 1,586 non-germline DNMs arising either somatically or in the cell lines from which the DNA was derived. Most strikingly, in one family, we observed that 92% of germline DNMs were from the paternal germline, whereas, in contrast, in the other family, 64% of DNMs were from the maternal germline. These observations suggest considerable variation in mutation rates within and between families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cryptic Distant Relatives Are Common in Both Isolated and Cosmopolitan Genetic Samples

              Although a few hundred single nucleotide polymorphisms (SNPs) suffice to infer close familial relationships, high density genome-wide SNP data make possible the inference of more distant relationships such as 2nd to 9th cousinships. In order to characterize the relationship between genetic similarity and degree of kinship given a timeframe of 100–300 years, we analyzed the sharing of DNA inferred to be identical by descent (IBD) in a subset of individuals from the 23andMe customer database (n = 22,757) and from the Human Genome Diversity Panel (HGDP-CEPH, n = 952). With data from 121 populations, we show that the average amount of DNA shared IBD in most ethnolinguistically-defined populations, for example Native American groups, Finns and Ashkenazi Jews, differs from continentally-defined populations by several orders of magnitude. Via extensive pedigree-based simulations, we determined bounds for predicted degrees of relationship given the amount of genomic IBD sharing in both endogamous and ‘unrelated’ population samples. Using these bounds as a guide, we detected tens of thousands of 2nd to 9th degree cousin pairs within a heterogenous set of 5,000 Europeans. The ubiquity of distant relatives, detected via IBD segments, in both ethnolinguistic populations and in large ‘unrelated’ populations samples has important implications for genetic genealogy, forensics and genotype/phenotype mapping studies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                25 March 2014
                : 9
                : 3
                : e92713
                Affiliations
                [1]Department of Computer Science, Stanford University, Stanford, California, United States of America
                Swiss Federal Institute of Technology (ETH Zurich), Switzerland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LH SB JMR SB. Performed the experiments: LH. Analyzed the data: LH. Wrote the paper: JMR SB LH SB.

                Article
                PONE-D-13-50540
                10.1371/journal.pone.0092713
                3965454
                24667521
                b3f9e553-ebfa-4908-a6eb-a968869d3309
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 December 2013
                : 24 February 2014
                Page count
                Pages: 10
                Funding
                LH is supported by a Pierre and Christine Lamond Stanford Graduate Fellowship. This material is also based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1147470. This work is also supported by a grant from the Stanford-KAUST alliance for academic excellence. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genome-Wide Association Studies
                Biological Data Management
                Evolutionary Biology
                Population Genetics
                Genetics
                Genomics
                Human Genetics
                Computer and Information Sciences
                Software Engineering
                Software Design
                Physical Sciences
                Mathematics
                Probability Theory

                Uncategorized
                Uncategorized

                Comments

                Comment on this article