61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The release of carbon from tropical forests may exacerbate future climate change, but the magnitude of the effect in climate models remains uncertain. Coupled climate-carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO(2) concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures. At present, the balance between these effects varies markedly among coupled climate-carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia and variations in the responses of alternative vegetation models to warming. Here we identify an emergent linear relationship, across an ensemble of models, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO(2) to tropical temperature anomalies. Combined with contemporary observations of atmospheric CO(2) concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate-carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO(2)-induced climate change if CO(2) fertilization effects are as large as suggested by current models. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols or increases in other greenhouse gases.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          Climate change, deforestation, and the fate of the Amazon.

          The forest biome of Amazonia is one of Earth's greatest biological treasures and a major component of the Earth system. This century, it faces the dual threats of deforestation and stress from climate change. Here, we summarize some of the latest findings and thinking on these threats, explore the consequences for the forest ecosystem and its human residents, and outline options for the future of Amazonia. We also discuss the implications of new proposals to finance preservation of Amazonian forests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increasing carbon storage in intact African tropical forests.

            The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world's tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha(-1) yr(-1) between 1968 and 2007 (95% confidence interval (CI), 0.22-0.94; mean interval, 1987-96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr(-1) (CI, 0.15-0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha(-1) yr(-1) (n = 156; 562 ha; CI, 0.29-0.66; mean interval, 1987-97). This indicates a carbon sink of 1.3 Pg C yr(-1) (CI, 0.8-1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Impact of changes in diffuse radiation on the global land carbon sink.

              Plant photosynthesis tends to increase with irradiance. However, recent theoretical and observational studies have demonstrated that photosynthesis is also more efficient under diffuse light conditions. Changes in cloud cover or atmospheric aerosol loadings, arising from either volcanic or anthropogenic emissions, alter both the total photosynthetically active radiation reaching the surface and the fraction of this radiation that is diffuse, with uncertain overall effects on global plant productivity and the land carbon sink. Here we estimate the impact of variations in diffuse fraction on the land carbon sink using a global model modified to account for the effects of variations in both direct and diffuse radiation on canopy photosynthesis. We estimate that variations in diffuse fraction, associated largely with the 'global dimming' period, enhanced the land carbon sink by approximately one-quarter between 1960 and 1999. However, under a climate mitigation scenario for the twenty-first century in which sulphate aerosols decline before atmospheric CO(2) is stabilized, this 'diffuse-radiation' fertilization effect declines rapidly to near zero by the end of the twenty-first century.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                1476-4687
                0028-0836
                Feb 21 2013
                : 494
                : 7437
                Affiliations
                [1 ] College of Engineering, Mathematics and Physical Science, University of Exeter, Exeter EX4 4QF, UK. p.m.cox@exeter.ac.uk
                Article
                nature11882
                10.1038/nature11882
                23389447
                b3f9fc38-d3b2-4430-a707-dddd931d2201
                History

                Comments

                Comment on this article