4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Search for Sterile Neutrinos in MINOS and MINOS+ Using a Two-Detector Fit

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , MINOS+ Collaboration
      Physical Review Letters
      American Physical Society (APS)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Minuit - a system for function minimization and analysis of the parameter errors and correlations

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Observation of Electron-Antineutrino Disappearance at Daya Bay

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion.

              We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 nu (e) candidate events with energies above 3.4 MeV compared to 365.2+/-23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8+/-7.3 expected background events, the statistical significance for reactor nu (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from nu (e) oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2). A global analysis of data from KamLAND and solar-neutrino experiments yields Deltam(2)=7.9(+0.6)(-0.5)x10(-5) eV(2) and tan((2)theta=0.40(+0.10)(-0.07), the most precise determination to date.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                March 2019
                March 6 2019
                : 122
                : 9
                Article
                10.1103/PhysRevLett.122.091803
                b4031846-bdd0-4e8b-a860-01099d22da4c
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article