16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell.

      Nature
      Apoptosis, Catalysis, Cell Line, Enzyme Inhibitors, Fas Ligand Protein, Gene Products, nef, physiology, Humans, Jurkat Cells, MAP Kinase Kinase Kinase 5, MAP Kinase Kinase Kinases, antagonists & inhibitors, Membrane Glycoproteins, metabolism, Mitogen-Activated Protein Kinase 8, Mitogen-Activated Protein Kinases, Signal Transduction, T-Lymphocytes, virology, Tumor Necrosis Factor-alpha

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In vivo infection of lymphatic tissues by the human immunodeficiency virus type 1 (HIV-1) leads to enhanced apoptosis, which prominently involves uninfected bystander cells. Increased killing of such bystander cells is mediated in part through Nef induction of Fas ligand (FasL) expression on the surface of the virally infected T cells. The subsequent interaction of FasL with Fas (CD95) displayed on neighbouring cells, including HIV-1-specific cytotoxic T lymphocytes, may lead to bystander cell killing and thus forms an important mechanism of immune evasion. As HIV-1 also enhances Fas expression on virally infected cells, it is unclear how these hosts avoid rapid cell-autonomous apoptosis mediated through cis ligation of Fas by FasL. Here we show that HIV-1 Nef associates with and inhibits apoptosis signal-regulating kinase 1 (ASK1), a serine/threonine kinase that forms a common and key signalling intermediate in the Fas and tumour-necrosis factor-alpha (TNFalpha) death-signalling pathways. The interaction of Nef with ASK1 inhibits both Fas- and TNFalpha-mediated apoptosis, as well as the activation of the downstream c-Jun amino-terminal kinase. Our findings reveal a strategy by which HIV-1 Nef promotes the killing of bystander cells through the induction of FasL, while simultaneously protecting the HIV-1-infected host cell from these same pro-apoptotic signals through its interference with ASK1 function.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1.

          Apoptosis signal-regulating kinase (ASK) 1 was recently identified as a mitogen-activated protein (MAP) kinase kinase kinase which activates the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and is required for tumor necrosis factor (TNF)-alpha-induced apoptosis; however, the mechanism regulating ASK1 activity is unknown. Through genetic screening for ASK1-binding proteins, thioredoxin (Trx), a reduction/oxidation (redox)-regulatory protein thought to have anti-apoptotic effects, was identified as an interacting partner of ASK1. Trx associated with the N-terminal portion of ASK1 in vitro and in vivo. Expression of Trx inhibited ASK1 kinase activity and the subsequent ASK1-dependent apoptosis. Treatment of cells with N-acetyl-L-cysteine also inhibited serum withdrawal-, TNF-alpha- and hydrogen peroxide-induced activation of ASK1 as well as apoptosis. The interaction between Trx and ASK1 was found to be highly dependent on the redox status of Trx. Moreover, inhibition of Trx resulted in activation of endogenous ASK1 activity, suggesting that Trx is a physiological inhibitor of ASK1. The evidence that Trx is a negative regulator of ASK1 suggests possible mechanisms for redox regulation of the apoptosis signal transduction pathway as well as the effects of antioxidants against cytokine- and stress-induced apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways.

            Mitogen-activated protein (MAP) kinase cascades are activated in response to various extracellular stimuli, including growth factors and environmental stresses. A MAP kinase kinase kinase (MAPKKK), termed ASK1, was identified that activated two different subgroups of MAP kinase kinases (MAPKK), SEK1 (or MKK4) and MKK3/MAPKK6 (or MKK6), which in turn activated stress-activated protein kinase (SAPK, also known as JNK; c-Jun amino-terminal kinase) and p38 subgroups of MAP kinases, respectively. Overexpression of ASK1 induced apoptotic cell death, and ASK1 was activated in cells treated with tumor necrosis factor-alpha (TNF-alpha). Moreover, TNF-alpha-induced apoptosis was inhibited by a catalytically inactive form of ASK1. ASK1 may be a key element in the mechanism of stress- and cytokine-induced apoptosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Importance of the nef gene for maintenance of high virus loads and for development of AIDS.

              When rhesus monkeys were infected with a form of cloned SIVmac239 having a premature stop signal at the 93rd codon of nef, revertants with a coding codon at this position quickly and universally came to predominate in the infected animals. This suggests that there are strong selective forces for open functional forms of nef in vivo. Although deletion of nef sequences had no detectable effect on virus replication in cultured cells, deletion of nef sequences dramatically altered the properties of virus in infected rhesus monkeys. Our results indicate that nef is required for maintaining high virus loads during the course of persistent infection in vivo and for full pathologic potential. Thus, nef should become a target for antiviral drug development. Furthermore, the properties of virus with a deletion in nef suggest a means for making live-attenuated strains of virus for experimental vaccine testing.
                Bookmark

                Author and article information

                Comments

                Comment on this article