30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decrease of PECAM-1-gene-expression induced by proinflammatory cytokines IFN-γ and IFN-α is reversed by TGF-β in sinusoidal endothelial cells and hepatic mononuclear phagocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and aim

          The mechanisms of transmigration of inflammatory cells through the sinusoids are still poorly understood. This study aims to identify in vitro conditions (cytokine treatment) which may allow a better understanding of the changes in PECAM (platelet endothelial cell adhesion molecule)-1-gene-expression observed in vivo.

          Methods and results

          In this study we show by immunohistochemistry, that there is an accumulation of ICAM-1 (intercellular cell adhesion molecule-1) and ED1 positive cells in necrotic areas of livers of CCl 4-treated rats, whereas there are few PECAM-1 positive cells observable. After the administration of CCl 4, we could detect an early rise of levels of IFN-γ followed by an enhanced TGF-β protein level. As shown by Northern blot analysis and surface protein expression analysed by flow cytometry, IFN-γ-treatment decreased PECAM-1-gene-expression in isolated SECs (sinusoidal endothelial cells) and mononuclear phagocytes (MNPs) in parallel with an increase in ICAM-1-gene-expression in a dose and time dependent manner. In contrast, TGF-β-treatment increased PECAM-1-expression. Additional administration of IFN-γ to CCl 4-treated rats and observations in IFN-γ -/- mice confirmed the effect of IFN-γ on PECAM-1 and ICAM-1-expression observed in vitro and increased the number of ED1-expressing cells 12 h after administration of the toxin.

          Conclusion

          The early decrease of PECAM-1-expression and the parallel increase of ICAM-1-expression following CCl 4-treatment is induced by elevated levels of IFN-γ in livers and may facilitate adhesion and transmigration of inflammatory cells. The up-regulation of PECAM-1-expression in SECs and MNPs after TGF-β-treatment suggests the involvement of PECAM-1 during the recovery after liver damage.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Leukocyte-endothelial adhesion molecules.

          In the 9 years since the last review on leukocyte and endothelial interactions was published in this journal many of the critical structures involved in leukocyte adherence to and migration across endothelium have been elucidated. With the advent of cell and molecular biology approaches, investigations have progressed from the early descriptions by intravital microscopy and histology, to functional and immunologic characterization of adhesion molecules, and now to the development of genetically deficient animals and the first phase I trial of "anti-adhesion" therapy in humans. The molecular cloning and definition of the adhesive functions of the leukocyte integrins, endothelial members of the Ig gene superfamily, and the selectins has already provided sufficient information to construct an operative paradigm of the molecular basis of leukocyte emigration. The regulation of these adhesion molecules by chemoattractants, cytokines, or chemokines, and the interrelationships of adhesion pathways need to be examined in vitro and, particularly, in vivo. Additional studies are required to dissect the contribution of the individual adhesion molecules to leukocyte emigration in various models of inflammation or immune reaction. Certainly, new adhesion structures will be identified, and the current paradigm of leukocyte emigration will be refined. The promise of new insights into the biology and pathology of the inflammatory and immune response, and the potential for new therapies for a wide variety of diseases assures that this will continue to be an exciting area of investigation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Involvement of platelet-endothelial cell adhesion molecule-1 in neutrophil recruitment in vivo.

            During inflammation, neutrophils migrate from the vascular lumen into extravascular sites. In vitro assays have suggested that platelet-endothelial cell adhesion molecule-1 [PECAM-1 (CD31)], a member of the immunoglobulin superfamily, is required for the transmigration of neutrophils across endothelial monolayers. Antibody to human PECAM-1, which cross-reacts with rat PECAM-1, was found to block not only in vivo accumulation of rat neutrophils into the peritoneal cavity and the alveolar compartment of the lung but also neutrophil accumulation in human skin grafts transplanted onto immunodeficient mice. On the basis of these findings in three different models of inflammation, it appears that PECAM-1 is required for neutrophil transmigration in vivo and may thus be a potential therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic evidence for functional redundancy of Platelet/Endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions.

              Platelet/endothelial cell adhesion molecule-1 (PECAM-1; CD31), a member of the Ig superfamily, is expressed strongly at endothelial cell-cell junctions, on platelets, and on most leukocytes. CD31 has been postulated to play a role in vasculogenesis and angiogenesis, and has been implicated as a key mediator of the transendothelial migration of leukocytes. To further define the physiologic role of CD31, we used targeted gene disruption of the CD31 gene in embryonic stem cells to generate CD31-deficient mice. CD31-deficient mice (CD31KO) are viable and born at the expected Mendelian frequency, remain healthy, and exhibit no obvious vascular developmental defects. In response to inflammatory challenge, polymorphonuclear leukocytes of CD31KO mice are arrested between the vascular endothelium and the basement membrane of inflammatory site mesenteric microvessels, confirming a role for CD31 in the migration of neutrophils through the subendothelial extracellular matrix. Normal numbers of leukocytes are recovered from inflammatory sites in CD31KO mice, however, suggesting that the defect in leukocyte migration across basal lamina observed in the absence of CD31 may be compensated for by the use of other adhesion molecules, or possibly an increased rate of migration. Homing of T lymphocytes in vivo is normal, and CD31KO mice are able to mount a cutaneous hypersensitivity response normally. In addition, CD31-mediated homophilic adhesion does not appear to play a role in platelet aggregation in vitro. This study provides genetic evidence that CD31 is involved in transbasement membrane migration, but does not play an obligatory role in either vascular development or leukocyte migration.
                Bookmark

                Author and article information

                Journal
                BMC Physiol
                BMC Physiology
                BioMed Central
                1472-6793
                2008
                8 May 2008
                : 8
                : 9
                Affiliations
                [1 ]University of Göttingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Göttingen, Germany
                Article
                1472-6793-8-9
                10.1186/1472-6793-8-9
                2396664
                18466611
                b4149027-be1e-4d20-89bd-969430e3afc2
                Copyright © 2008 Neubauer et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 November 2007
                : 8 May 2008
                Categories
                Research Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article