2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Prolonged co-existence of ‘archaic’ and ‘modern’ Palaeozoic ophiuroids – evidence from the early Permian, Southern Carnarvon Basin, Western Australia

      1 , 2 , 3 , 2
      Journal of Systematic Palaeontology
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: found

          Ocean acidification: the other CO2 problem.

          Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Mesozoic marine revolution: evidence from snails, predators and grazers

            Tertiary and Recent marine gastropods include in their ranks a complement of mechanically sturdy forms unknown in earlier epochs. Open coiling, planispiral coiling, and umbilici detract from shell sturdiness, and were commoner among Paleozoic and Early Mesozoic gastropods than among younger forms. Strong external sculpture, narrow elongate apertures, and apertural dentition promote resistance to crushing predation and are primarily associated with post-Jurassic mesogastropods, neogastropods, and neritaceans. The ability to remodel the interior of the shell, developed primarily in gastropods with a non-nacreous shell structure, has contributed greatly to the acquisition of these antipredatory features.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mid-Paleozoic precursor to the Mesozoic marine revolution

              The mid-Paleozoic was punctuated by a rapid radiation of durophagous (shell-crushing) predators. These new predators were primarily placoderm and chondrichthyan fishes but probably also included phyllocarid and eumalacostracan arthropods. Coincident with the radiation of these durophages, beginning in the mid-Devonian, there was an increase in the frequency of predation-resistant morphologies in a variety of marine invertebrate taxa. Among bellerophontid molluscs, disjunct coiling disappeared and umbilici became less common while the frequency of genera with sculpture increased. The abundance of brachiopod genera with spines on one or both valves increased dramatically. Sculpture became more pronounced and common among genera of coiled nautiloids. Inadunate and camerate crinoids showed a marked increase in spinosity, and all three crinoid subclasses tended to develop thicker thecal plates.
                Bookmark

                Author and article information

                Journal
                Journal of Systematic Palaeontology
                Journal of Systematic Palaeontology
                Informa UK Limited
                1477-2019
                1478-0941
                September 25 2017
                September 02 2018
                August 11 2017
                September 02 2018
                : 16
                : 11
                : 891-907
                Affiliations
                [1 ]Department of Applied Geology, Western Australian School of Mines, Curtin University, Bentley, GPO Box U1987, Perth, WA 6845, Australia
                [2 ]Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
                [3 ]School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
                Article
                10.1080/14772019.2017.1353549
                b426d417-e799-457b-b720-dc40595f7613
                © 2018
                History

                Comments

                Comment on this article