52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of Gene Association Methods for Coexpression Network Construction and Biological Knowledge Discovery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Constructing coexpression networks and performing network analysis using large-scale gene expression data sets is an effective way to uncover new biological knowledge; however, the methods used for gene association in constructing these coexpression networks have not been thoroughly evaluated. Since different methods lead to structurally different coexpression networks and provide different information, selecting the optimal gene association method is critical.

          Methods and Results

          In this study, we compared eight gene association methods – Spearman rank correlation, Weighted Rank Correlation, Kendall, Hoeffding's D measure, Theil-Sen, Rank Theil-Sen, Distance Covariance, and Pearson – and focused on their true knowledge discovery rates in associating pathway genes and construction coordination networks of regulatory genes. We also examined the behaviors of different methods to microarray data with different properties, and whether the biological processes affect the efficiency of different methods.

          Conclusions

          We found that the Spearman, Hoeffding and Kendall methods are effective in identifying coexpressed pathway genes, whereas the Theil-sen, Rank Theil-Sen, Spearman, and Weighted Rank methods perform well in identifying coordinated transcription factors that control the same biological processes and traits. Surprisingly, the widely used Pearson method is generally less efficient, and so is the Distance Covariance method that can find gene pairs of multiple relationships. Some analyses we did clearly show Pearson and Distance Covariance methods have distinct behaviors as compared to all other six methods. The efficiencies of different methods vary with the data properties to some degree and are largely contingent upon the biological processes, which necessitates the pre-analysis to identify the best performing method for gene association and coexpression network construction.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          A gene-coexpression network for global discovery of conserved genetic modules.

          To elucidate gene function on a global scale, we identified pairs of genes that are coexpressed over 3182 DNA microarrays from humans, flies, worms, and yeast. We found 22,163 such coexpression relationships, each of which has been conserved across evolution. This conservation implies that the coexpression of these gene pairs confers a selective advantage and therefore that these genes are functionally related. Many of these relationships provide strong evidence for the involvement of new genes in core biological functions such as the cell cycle, secretion, and protein expression. We experimentally confirmed the predictions implied by some of these links and identified cell proliferation functions for several genes. By assembling these links into a gene-coexpression network, we found several components that were animal-specific as well as interrelationships between newly evolved and ancient modules.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis.

            SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN1 (SND1) is a master transcriptional switch activating the developmental program of secondary wall biosynthesis. Here, we demonstrate that a battery of SND1-regulated transcription factors is required for normal secondary wall biosynthesis in Arabidopsis thaliana. The expression of 11 SND1-regulated transcription factors, namely, SND2, SND3, MYB103, MYB85, MYB52, MYB54, MYB69, MYB42, MYB43, MYB20, and KNAT7 (a Knotted1-like homeodomain protein), was developmentally associated with cells undergoing secondary wall thickening. Of these, dominant repression of SND2, SND3, MYB103, MYB85, MYB52, MYB54, and KNAT7 significantly reduced secondary wall thickening in fiber cells. Overexpression of SND2, SND3, and MYB103 increased secondary wall thickening in fibers, and overexpression of MYB85 led to ectopic deposition of lignin in epidermal and cortical cells in stems. Furthermore, SND2, SND3, MYB103, MYB85, MYB52, and MYB54 were able to induce secondary wall biosynthetic genes. Direct target analysis using the estrogen-inducible system revealed that MYB46, SND3, MYB103, and KNAT7 were direct targets of SND1 and also of its close homologs, NST1, NST2, and vessel-specific VND6 and VND7. Together, these results demonstrate that a transcriptional network consisting of SND1 and its downstream targets is involved in regulating secondary wall biosynthesis in fibers and that NST1, NST2, VND6, and VND7 are functional homologs of SND1 that regulate the same downstream targets in different cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gene expression profiles during the initial phase of salt stress in rice.

              Transcript regulation in response to high salinity was investigated for salt-tolerant rice (var Pokkali) with microarrays including 1728 cDNAs from libraries of salt-stressed roots. NaCl at 150 mM reduced photosynthesis to one tenth of the prestress value within minutes. Hybridizations of RNA to microarray slides probed for changes in transcripts from 15 min to 1 week after salt shock. Beginning 15 min after the shock, Pokkali showed upregulation of transcripts. Approximately 10% of the transcripts in Pokkali were significantly upregulated or downregulated within 1 hr of salt stress. The initial differences between control and stressed plants continued for hours but became less pronounced as the plants adapted over time. The interpretation of an adaptive process was supported by the similar analysis of salinity-sensitive rice (var IR29), in which the immediate response exhibited by Pokkali was delayed and later resulted in downregulation of transcription and death. The upregulated functions observed with Pokkali at different time points during stress adaptation changed over time. Increased protein synthesis and protein turnover were observed at early time points, followed by the induction of known stress-responsive transcripts within hours, and the induction of transcripts for defense-related functions later. After 1 week, the nature of upregulated transcripts (e.g., aquaporins) indicated recovery.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 November 2012
                : 7
                : 11
                : e50411
                Affiliations
                [1 ]Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, United States of America
                [2 ]Morgridge Institute for Research, Madison, Wisconsin, United States of America
                [3 ]Statistical Methodology and Applications Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
                [4 ]Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia, United States of America
                [5 ]Department of Computer Science, Michigan Technological University, Houghton, Michigan, United States of America
                [6 ]State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P.R. China
                [7 ]Department of Computer Science, University of Wisconsin, Madison, Wisconsin, United States of America
                [8 ]Biotechnology Research Center, Michigan Technological University, Houghton, Michigan, United States of America
                [9 ]School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan, United States of America
                University of California, Los Angeles, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HW. Performed the experiments: SK JN HSC HM RS XL MZL WMT HW. Analyzed the data: SK JN HSC HM RS XL MZL WMT HW. Contributed reagents/materials/analysis tools: SK. Wrote the paper: HW SK.

                Article
                PONE-D-12-16118
                10.1371/journal.pone.0050411
                3511551
                23226279
                b43a8ea8-ff68-4078-8cc7-b60e01efb47f
                Copyright @ 2012

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 4 June 2012
                : 18 October 2012
                Page count
                Pages: 17
                Funding
                This study was funded by the start-up fund to Dr. Wei from the School of Forest Resources and Environment Science, Michigan Technological University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Genetic Networks
                Microarrays
                Systems Biology
                Genomics
                Genome Expression Analysis
                Plant Science
                Plant Genomics
                Mathematics
                Statistics
                Statistical Methods

                Uncategorized
                Uncategorized

                Comments

                Comment on this article