202
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maize Inbreds Exhibit High Levels of Copy Number Variation (CNV) and Presence/Absence Variation (PAV) in Genome Content

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Following the domestication of maize over the past ∼10,000 years, breeders have exploited the extensive genetic diversity of this species to mold its phenotype to meet human needs. The extent of structural variation, including copy number variation (CNV) and presence/absence variation (PAV), which are thought to contribute to the extraordinary phenotypic diversity and plasticity of this important crop, have not been elucidated. Whole-genome, array-based, comparative genomic hybridization (CGH) revealed a level of structural diversity between the inbred lines B73 and Mo17 that is unprecedented among higher eukaryotes. A detailed analysis of altered segments of DNA conservatively estimates that there are several hundred CNV sequences among the two genotypes, as well as several thousand PAV sequences that are present in B73 but not Mo17. Haplotype-specific PAVs contain hundreds of single-copy, expressed genes that may contribute to heterosis and to the extraordinary phenotypic diversity of this important crop.

          Author Summary

          There is a growing appreciation for the role of genome structural variation in creating phenotypic variation within a species. Comparative genomic hybridization was used to compare the genome structures of two maize inbred lines, B73 and Mo17. The data reinforce the view that maize is a highly polymorphic species, but also show that there are often large genomic regions that have little or no variation. We identify several hundred sequences that, while present in both B73 and Mo17, have copy number differences in the two genomes. In addition, there are several thousand sequences, including at least 180 sequences annotated as single-copy genes, that are present in one genome but entirely missing in the other genome. This genome content variation leads to differences in transcript content between inbred lines and likely contributes to phenotypic diversity and heterosis in maize.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Global variation in copy number in the human genome.

          Copy number variation (CNV) of DNA sequences is functionally significant but has yet to be fully ascertained. We have constructed a first-generation CNV map of the human genome through the study of 270 individuals from four populations with ancestry in Europe, Africa or Asia (the HapMap collection). DNA from these individuals was screened for CNV using two complementary technologies: single-nucleotide polymorphism (SNP) genotyping arrays, and clone-based comparative genomic hybridization. A total of 1,447 copy number variable regions (CNVRs), which can encompass overlapping or adjacent gains or losses, covering 360 megabases (12% of the genome) were identified in these populations. These CNVRs contained hundreds of genes, disease loci, functional elements and segmental duplications. Notably, the CNVRs encompassed more nucleotide content per genome than SNPs, underscoring the importance of CNV in genetic diversity and evolution. The data obtained delineate linkage disequilibrium patterns for many CNVs, and reveal marked variation in copy number among populations. We also demonstrate the utility of this resource for genetic disease studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

            Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural variation in the human genome.

              The first wave of information from the analysis of the human genome revealed SNPs to be the main source of genetic and phenotypic human variation. However, the advent of genome-scanning technologies has now uncovered an unexpectedly large extent of what we term 'structural variation' in the human genome. This comprises microscopic and, more commonly, submicroscopic variants, which include deletions, duplications and large-scale copy-number variants - collectively termed copy-number variants or copy-number polymorphisms - as well as insertions, inversions and translocations. Rapidly accumulating evidence indicates that structural variants can comprise millions of nucleotides of heterogeneity within every genome, and are likely to make an important contribution to human diversity and disease susceptibility.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                November 2009
                November 2009
                20 November 2009
                : 5
                : 11
                : e1000734
                Affiliations
                [1 ]Department of Plant Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
                [2 ]Interdepartmental Genetics Graduate Program, Iowa State University, Ames, Iowa, United States of America
                [3 ]Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa, United States of America
                [4 ]Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
                [5 ]Center for Carbon Capturing Crops, Iowa State University, Ames, Iowa, United States of America
                [6 ]Department of Statistics, Iowa State University, Ames, Iowa, United States of America
                [7 ]Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
                [8 ]Interdepartment Plant Biology, Iowa State University, Ames, Iowa, United States of America
                [9 ]Roche NimbleGen, Madison, Wisconsin, United States of America
                [10 ]University of Florida, Gainesville, Florida, United States of America
                The Salk Institute for Biological Studies, United States of America
                Author notes

                Conceived and designed the experiments: NMS JAJ PSS. Performed the experiments: KY YF YJ WW HR ALI. Analyzed the data: NMS KY YF TJ CTY YJ WW WBB JAJ DN PSS. Contributed reagents/materials/analysis tools: TR JK WBB JAJ. Wrote the paper: NMS PSS.

                Article
                09-PLGE-RA-MZ-1112R2
                10.1371/journal.pgen.1000734
                2780416
                19956538
                b43d4228-2de7-4450-bab1-23e4d9fa9dce
                Springer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 1 July 2009
                : 19 October 2009
                Page count
                Pages: 17
                Categories
                Research Article
                Genetics and Genomics/Comparative Genomics
                Genetics and Genomics/Plant Genetics and Gene Expression
                Genetics and Genomics/Plant Genomes and Evolution

                Genetics
                Genetics

                Comments

                Comment on this article