16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Balance design for robust foliar nutrient diagnosis of “Prata” banana ( Musa spp.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The “Cavendish” and “Prata” subgroups represent respectively 47% and 24% of the world banana production. Compared to world average progressing from 10.6 to 20.6 t ha −1 between 1961 and 2016, and despite sustained domestic demand and the introduction of new cultivars, banana yield in Brazil has stagnated around 14.5 t ha −1 mainly due to nutrient and water mismanagement. “Prata” is now the dominant subgroup in N-E Brazil and is fertigated at high costs. Nutrient balances computed as isometric log-ratios ( ilr) provide a comprehensive understanding of nutrient relationships in the diagnostic leaf at high yield level by combining raw concentration data. Although the most appropriate method for multivariate analysis of compositional balances may be less efficient due to non-normal data distribution and limited nutrient mobility in the plant, robustness of the nutrient balance approach could be improved using Box-Cox exponents assigned to raw foliar concentrations. Our objective was to evaluate the accuracy of nutrient balances to diagnose fertigated “Prata” orchards. The dataset comprised 609 observations on fruit yields and leaf tissue compositions collected from 2010 to 2016 in Ceará state, N-E Brazil. Raw nutrient concentration ranges were ineffective as diagnostic tool due to considerable overlapping of concentration ranges for low- and high-yielding subpopulations at cutoff yield of 40 Mg ha −1. Nutrient concentrations were combined into isometric log-ratios ( ilr) and normalized by Box-Cox corrections between 0 and 1 which may also account for restricted nutrient transfer from leaf to fruit. Despite reduced ilr skewness, Box-Cox coefficients did not improve model robustness measured as the accuracy of the Cate-Nelson partition between yield and the multivariate distance across ilr values. Sensitivity was 94%, indicating that low yields are attributable primarily to nutrient imbalance. There were 148 false-positive specimens (high yield despite nutrient imbalance) likely due to suboptimal nutrition, contamination, or luxury consumption. The profitability of “Prata” orchards could be enhanced by rebalancing nutrients using ilr standards with no need for Box-Cox correction.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          N : P ratios in terrestrial plants: variation and functional significance

          Nitrogen (N) and phosphorus (P) availability limit plant growth in most terrestrial ecosystems. This review examines how variation in the relative availability of N and P, as reflected by N : P ratios of plant biomass, influences vegetation composition and functioning. Plastic responses of plants to N and P supply cause up to 50-fold variation in biomass N : P ratios, associated with differences in root allocation, nutrient uptake, biomass turnover and reproductive output. Optimal N : P ratios - those of plants whose growth is equally limited by N and P - depend on species, growth rate, plant age and plant parts. At vegetation level, N : P ratios <10 and >20 often (not always) correspond to N- and P-limited biomass production, as shown by short-term fertilization experiments; however long-term effects of fertilization or effects on individual species can be different. N : P ratios are on average higher in graminoids than in forbs, and in stress-tolerant species compared with ruderals; they correlate negatively with the maximal relative growth rates of species and with their N-indicator values. At vegetation level, N : P ratios often correlate negatively with biomass production; high N : P ratios promote graminoids and stress tolerators relative to other species, whereas relationships with species richness are not consistent. N : P ratios are influenced by global change, increased atmospheric N deposition, and conservation managment. Contents Summary 243 I Introduction 244 II Variability of N : P ratios in response to nutrient  supply 244 III Critical N : P ratios as indicators of nutrient  limitation 248 IV Interspecific variation in N : P ratios 252 V Vegetation properties in relation to N : P ratios 255 VI Implications of N : P ratios for human impacts  on ecosystems 258 VII Conclusions 259 Acknowledgements 259 References 260.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Groups of Parts and Their Balances in Compositional Data Analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Resource use efficiency in agriculture

                Bookmark

                Author and article information

                Contributors
                aridianolima@yahoo.com.br
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 October 2018
                9 October 2018
                2018
                : 8
                : 15040
                Affiliations
                [1 ]ISNI 0000 0001 2160 0329, GRID grid.8395.7, Federal University of Ceará, Department of Soil Science, ; Fortaleza, 60440-554 Ceará Brazil
                [2 ]ISNI 0000 0000 8338 6359, GRID grid.12799.34, Federal University of Viçosa, Department of Soils, ; Viçosa, 35670-900 Minas Gerais Brazil
                [3 ]ISNI 0000 0001 2160 0329, GRID grid.8395.7, Federal University of Ceará, Department of Plant Science, ; Fortaleza, 60440-554 Ceará Brazil
                [4 ]ISNI 0000 0004 1936 8390, GRID grid.23856.3a, Université Laval, Department of Soils and Agri-Food Engineering, Québec, ; G1V 0A6 Québec, Canada
                Article
                32328
                10.1038/s41598-018-32328-y
                6177482
                30302005
                b44fdc17-f3c7-484a-8354-0a8aa3fa2bf2
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 November 2017
                : 5 September 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article