13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A phylogenetic re-evaluation of Arthrinium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although the genus Arthrinium (sexual morph Apiospora) is commonly isolated as an endophyte from a range of substrates, and is extremely interesting for the pharmaceutical industry, its molecular phylogeny has never been resolved. Based on morphology and DNA sequence data of the large subunit nuclear ribosomal RNA gene (LSU, 28S) and the internal transcribed spacers (ITS) and 5.8S rRNA gene of the nrDNA operon, the genus Arthrinium is shown to belong to Apiosporaceae in Xylariales. Arthrinium is morphologically and phylogenetically circumscribed, and the sexual genus Apiospora treated as synonym on the basis that Arthinium is older, more commonly encountered, and more frequently used in literature. An epitype is designated for Arthrinium pterospermum, and several well-known species are redefined based on their morphology and sequence data of the translation elongation factor 1-alpha (TEF), beta-tubulin (TUB) and internal transcribed spacer (ITS1, 5.8S, ITS2) gene regions. Newly described are A. hydei on Bambusa tuldoides from Hong Kong, A. kogelbergense on dead culms of Restionaceae from South Africa, A. malaysianum on Macaranga hullettii from Malaysia, A. ovatum on Arundinaria hindsii from Hong Kong, A. phragmites on Phragmites australis from Italy , A. pseudospegazzinii on Macaranga hullettii from Malaysia , A. pseudosinense on bamboo from The Netherlands, and A. xenocordella from soil in Zimbabwe. Furthermore, the genera Pteroconium and Cordella are also reduced to synonymy, rejecting spore shape and the presence of setae as characters of generic significance separating them from Arthrinium

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous.

          The evolutionary history of the phytopathogenic Gibberella fujikuroi complex of Fusarium and related species was investigated by cladistic analysis of DNA sequences obtained from multiple unlinked loci. Gene phylogenies inferred from the mitochondrial small subunit (mtSSU) rDNA, nuclear 28S rDNA, and beta-tubulin gene were generally concordant, providing strong support for a fully resolved phylogeny of all biological and most morphological species. Discordance of the nuclear rDNA internal transcribed spacer 2 (ITS2) gene tree is due to paralogous or xenologous ITS2 sequences. PCR and sequence analysis demonstrated that every strain of the ingroup species tested possesses two highly divergent nonorthologous ITS2 types designated type I and type II. Only the major ITS2 type, however, is discernable when PCR products are amplified and sequenced directly with conserved primers. The minor ITS2 type was recovered using ITS2 type-specific PCR primers. Distribution of the major ITS2 type within the species lineages exhibits a homoplastic pattern of evolution, thus obscuring true phylogenetic relationships. The results suggest that the ancestral ITS2 types may have arisen following an ancient interspecific hybridization or gene duplication which occurred prior to the evolutionary radiation of the Gibberella fujikuroi complex and related species of Fusarium. The results also indicate that current morphological-based taxonomic schemes for these fungi are unnatural and a new classification is required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phylogenetic lineages in the Capnodiales

            The Capnodiales incorporates plant and human pathogens, endophytes, saprobes and epiphytes, with a wide range of nutritional modes. Several species are lichenised, or occur as parasites on fungi, or animals. The aim of the present study was to use DNA sequence data of the nuclear ribosomal small and large subunit RNA genes to test the monophyly of the Capnodiales, and resolve families within the order. We designed primers to allow the amplification and sequencing of almost the complete nuclear ribosomal small and large subunit RNA genes. Other than the Capnodiaceae (sooty moulds), and the Davidiellaceae, which contains saprobes and plant pathogens, the order presently incorporates families of major plant pathological importance such as the Mycosphaerellaceae, Teratosphaeriaceae and Schizothyriaceae. The Piedraiaceae was not supported, but resolves in the Teratosphaeriaceae. The Dissoconiaceae is introduced as a new family to accommodate Dissoconium and Ramichloridium. Lichenisation, as well as the ability to be saprobic or plant pathogenic evolved more than once in several families, though the taxa in the upper clades of the tree lead us to conclude that the strictly plant pathogenic, nectrotrophic families evolved from saprobic ancestors (Capnodiaceae), which is the more primitive state.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Dematiaceous Hyphomycetes

              M. Ellis (1971)
                Bookmark

                Author and article information

                Journal
                IMA Fungus
                IMA Fungus
                IMA Fungus
                IMA Fungus
                International Mycological Association
                2210-6340
                2210-6359
                24 June 2013
                July 2013
                : 4
                : 1
                : 133-154
                Affiliations
                [1 ]CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
                [2 ]Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
                [3 ]Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
                Author notes
                corresponding author e-mail: p.crous@ 123456cbs.knaw.nl
                Article
                10.5598/imafungus.2013.04.01.13
                3719201
                23898419
                b45974f2-c005-4238-9e55-ceb464f08e4a
                © 2013 International Mycological Association

                You are free to share - to copy, distribute and transmit the work, under the following conditions:

                Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).

                Non-commercial: You may not use this work for commercial purposes.

                No derivative works: You may not alter, transform, or build upon this work.

                For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights.

                History
                : 15 May 2013
                : 4 June 2013
                Categories
                Article

                Plant science & Botany
                apiospora,apiosporaceae,its,lsu,ascomycota,sordariomycetes,systematics
                Plant science & Botany
                apiospora, apiosporaceae, its, lsu, ascomycota, sordariomycetes, systematics

                Comments

                Comment on this article