32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sulforaphane prevents bleomycin-induced pulmonary fibrosis in mice by inhibiting oxidative stress via nuclear factor erythroid 2-related factor-2 activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lung fibrosis is associated with inflammation, apoptosis and oxidative damage. The transcription factor nuclear factor erythroid 2-related factor-2 (Nrf2) prevents damage to cells from oxidative stress by regulating the expression of antioxidant proteins. Sulforaphane (SFN), an Nrf2 activator, additionally regulates excessive oxidative stress by promoting the expression of endogenous antioxidants. The present study investigated if SFN protects against lung injury induced by bleomycin (BLM). The secondary aim of the present study was to assess if this protection mechanism involves upregulation of Nrf2 and its downstream antioxidants. Pulmonary fibrosis was induced in C57/BL6 mice by intratracheal instillation of BLM. BLM and age-matched control mice were treated with or without a daily dose of 0.5 mg/kg SFN until sacrifice. On days 7 and 28, mice were assessed for induction of apoptosis, inflammation, fibrosis, oxidative damage and Nrf2 expression in the lungs. The lungs were investigated with histological techniques including haematoxylin and eosin staining, Masson's trichrome staining and terminal deoxynucleotidyl transferase UTP nick end labeling. Inflammatory, fibrotic and apoptotic processes were confirmed by western blot analysis for interleukin-1β, tumor necrosis factor-α, transforming growth factor-β and caspase-3 protein expressions. Furthermore, protein levels of 3-nitro-tyrosine, 4-hydroxynonenal, superoxide dismutase 1 and catalase were investigated by western blot analysis. It was demonstrated that pulmonary fibrosis induced by BLM significantly increased apoptosis, inflammation, fibrosis and oxidative stress in the lungs at days 7 and 28. Notably, SFN treatment significantly attenuated the infiltration of the inflammatory cells, collagen accumulation, epithelial cell apoptosis and oxidative stress in the lungs. In addition, SFN treatment increased expression of the Nrf2 gene and its downstream targets. In conclusion, these results suggested that SFN treatment of pulmonary fibrosis mouse models may attenuate alveolitis, fibrosis, apoptosis and lung oxidative stress by increasing the expression of antioxidant enzymes, including NAPDH quinone oxidoreductase, heme oxygenase-1, superoxide dismutase and catalase, via upregulation of Nrf2 gene expression. Thus, the results from the present study may facilitate the development of therapies for BLM-toxicity and pulmonary fibrosis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.

          A major mechanism in the cellular defense against oxidative or electrophilic stress is activation of the Nrf2-antioxidant response element signaling pathway, which controls the expression of genes whose protein products are involved in the detoxication and elimination of reactive oxidants and electrophilic agents through conjugative reactions and by enhancing cellular antioxidant capacity. At the molecular level, however, the regulatory mechanisms involved in mediating Nrf2 activation are not fully understood. It is well established that Nrf2 activity is controlled, in part, by the cytosolic protein Keap1, but the nature of this pathway and the mechanisms by which Keap1 acts to repress Nrf2 activity remain to be fully characterized and are the topics of discussion in this minireview. In addition, a possible role of the Nrf2-antioxidant response element transcriptional pathway in neuroprotection will also be discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress and pulmonary fibrosis.

            Oxidative stress is implicated as an important molecular mechanism underlying fibrosis in a variety of organs, including the lungs. However, the causal role of reactive oxygen species (ROS) released from environmental exposures and inflammatory/interstitial cells in mediating fibrosis as well as how best to target an imbalance in ROS production in patients with fibrosis is not firmly established. We focus on the role of ROS in pulmonary fibrosis and, where possible, highlight overlapping molecular pathways in other organs. The key origins of oxidative stress in pulmonary fibrosis (e.g. environmental toxins, mitochondria/NADPH oxidase of inflammatory and lung target cells, and depletion of antioxidant defenses) are reviewed. The role of alveolar epithelial cell (AEC) apoptosis by mitochondria- and p53-regulated death pathways is examined. We emphasize an emerging role for the endoplasmic reticulum (ER) in pulmonary fibrosis. After briefly summarizing how ROS trigger a DNA damage response, we concentrate on recent studies implicating a role for mitochondrial DNA (mtDNA) damage and repair mechanisms focusing on 8-oxoguanine DNA glycosylase (Ogg1) as well as crosstalk between ROS production, mtDNA damage, p53, Ogg1, and mitochondrial aconitase (ACO2). Finally, the association between ROS and TGF-β1-induced fibrosis is discussed. Novel insights into the molecular basis of ROS-induced pulmonary diseases and, in particular, lung epithelial cell death may promote the development of unique therapeutic targets for managing pulmonary fibrosis as well as fibrosis in other organs and tumors, and in aging; diseases for which effective management is lacking. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. Published by Elsevier B.V.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New cellular and molecular mechanisms of lung injury and fibrosis in idiopathic pulmonary fibrosis.

              Idiopathic pulmonary fibrosis is a serious and progressive chronic lung disease that is characterised by altered cellular composition and homoeostasis in the peripheral lung, leading to excessive accumulation of extracellular matrix and, ultimately, loss of lung function. It is the interstitial pneumonia with the worst prognosis--mortality 3-5 years after diagnosis is 50%. During the past decade, researchers have described several novel cellular and molecular mechanisms and signalling pathways implicated in the pathogenesis of idiopathic pulmonary fibrosis, resulting in the identification of new therapeutic targets. These advances will hopefully result in increased survival rates and improved quality of life for patients with this disorder in future. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Mol Med Rep
                Mol Med Rep
                Molecular Medicine Reports
                D.A. Spandidos
                1791-2997
                1791-3004
                June 2017
                03 May 2017
                03 May 2017
                : 15
                : 6
                : 4005-4014
                Affiliations
                [1 ]Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
                [2 ]Department of Respiratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
                Author notes
                Correspondence to: Dr Junling Yang, Department of Respiratory Medicine, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130041, P.R. China, E-mail: drjunlingyang@ 123456163.com
                Article
                mmr-15-06-4005
                10.3892/mmr.2017.6546
                5436151
                28487960
                b462597c-747d-454e-9424-d48008b8a2f0
                Copyright: © Yan et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 22 January 2016
                : 15 February 2017
                Categories
                Articles

                sulforaphane,nuclear factor erythroid2-related factor-2,fibrosis,bleomycin,oxidative damage

                Comments

                Comment on this article