0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SPECI: Skill Prompts based Hierarchical Continual Imitation Learning for Robot Manipulation

      Preprint
      ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Real-world robot manipulation in dynamic unstructured environments requires lifelong adaptability to evolving objects, scenes and tasks. Traditional imitation learning relies on static training paradigms, which are ill-suited for lifelong adaptation. Although Continual Imitation Learnin (CIL) enables incremental task adaptation while preserving learned knowledge, current CIL methods primarily overlook the intrinsic skill characteristics of robot manipulation or depend on manually defined and rigid skills, leading to suboptimal cross-task knowledge transfer. To address these issues, we propose Skill Prompts-based HiErarchical Continual Imitation Learning (SPECI), a novel end-to-end hierarchical CIL policy architecture for robot manipulation. The SPECI framework consists of a multimodal perception and fusion module for heterogeneous sensory information encoding, a high-level skill inference module for dynamic skill extraction and selection, and a low-level action execution module for precise action generation. To enable efficient knowledge transfer on both skill and task levels, SPECI performs continual implicit skill acquisition and reuse via an expandable skill codebook and an attention-driven skill selection mechanism. Furthermore, we introduce mode approximation to augment the last two modules with task-specific and task-sharing parameters, thereby enhancing task-level knowledge transfer. Extensive experiments on diverse manipulation task suites demonstrate that SPECI consistently outperforms state-of-the-art CIL methods across all evaluated metrics, revealing exceptional bidirectional knowledge transfer and superior overall performance.

          Related collections

          Author and article information

          Journal
          21 April 2025
          Article
          2504.15561
          b4652f35-4697-4176-b7a3-d217bdac432d

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.RO cs.LG

          Robotics,Artificial intelligence
          Robotics, Artificial intelligence

          Comments

          Comment on this article

          Related Documents Log