89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Brain plasticity through the life span: learning to learn and action video games.

      Annual review of neuroscience
      Algorithms, Brain, physiology, Human Development, Humans, Learning, Neural Networks (Computer), Neuronal Plasticity, Psychomotor Performance, Transfer (Psychology), Video Games, psychology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of the human brain to learn is exceptional. Yet, learning is typically quite specific to the exact task used during training, a limiting factor for practical applications such as rehabilitation, workforce training, or education. The possibility of identifying training regimens that have a broad enough impact to transfer to a variety of tasks is thus highly appealing. This work reviews how complex training environments such as action video game play may actually foster brain plasticity and learning. This enhanced learning capacity, termed learning to learn, is considered in light of its computational requirements and putative neural mechanisms.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          Attention regulation and monitoring in meditation.

          Meditation can be conceptualized as a family of complex emotional and attentional regulatory training regimes developed for various ends, including the cultivation of well-being and emotional balance. Among these various practices, there are two styles that are commonly studied. One style, focused attention meditation, entails the voluntary focusing of attention on a chosen object. The other style, open monitoring meditation, involves nonreactive monitoring of the content of experience from moment to moment. The potential regulatory functions of these practices on attention and emotion processes could have a long-term impact on the brain and behavior.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A dual-networks architecture of top-down control.

            Complex systems ensure resilience through multiple controllers acting at rapid and slower timescales. The need for efficient information flow through complex systems encourages small-world network structures. On the basis of these principles, a group of regions associated with top-down control was examined. Functional magnetic resonance imaging showed that each region had a specific combination of control signals; resting-state functional connectivity grouped the regions into distinct 'fronto-parietal' and 'cingulo-opercular' components. The fronto-parietal component seems to initiate and adjust control; the cingulo-opercular component provides stable 'set-maintenance' over entire task epochs. Graph analysis showed dense local connections within components and weaker 'long-range' connections between components, suggesting a small-world architecture. The control systems of the brain seem to embody the principles of complex systems, encouraging resilient performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distracted and confused?: selective attention under load.

              The ability to remain focused on goal-relevant stimuli in the presence of potentially interfering distractors is crucial for any coherent cognitive function. However, simply instructing people to ignore goal-irrelevant stimuli is not sufficient for preventing their processing. Recent research reveals that distractor processing depends critically on the level and type of load involved in the processing of goal-relevant information. Whereas high perceptual load can eliminate distractor processing, high load on "frontal" cognitive control processes increases distractor processing. These findings provide a resolution to the long-standing early and late selection debate within a load theory of attention that accommodates behavioural and neuroimaging data within a framework that integrates attention research with executive function.
                Bookmark

                Author and article information

                Journal
                22715883
                10.1146/annurev-neuro-060909-152832

                Chemistry
                Algorithms,Brain,physiology,Human Development,Humans,Learning,Neural Networks (Computer),Neuronal Plasticity,Psychomotor Performance,Transfer (Psychology),Video Games,psychology

                Comments

                Comment on this article