19
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hiperoxaluria primaria Translated title: Primary hyperoxaluria

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          La hiperoxaluria primaria (HOP) se debe a un desorden metabólico hereditario autosómico recesivo, del metabolismo del glioxalato, que causa una producción excesiva de oxalato. El trastorno más frecuente y grave se debe al déficit enzimático de alanin:glioxalato aminotransferasa (HOP tipo I) específico en el peroxisoma hepático. Dado que el oxalato no se metaboliza en los humanos y se elimina por vía renal, el riñón es el primer órgano afectado, dando lugar a la aparición de litiasis de repetición, nefrocalcinosis e insuficiencia renal precoz. Con la progresión de la insuficiencia renal, especialmente en pacientes sometidos a hemodiálisis (HD), el oxalato cálcico se deposita masivamente en los tejidos, denominándose a esto último oxalosis. El diagnóstico se basa en los antecedentes familiares, la presencia de urolitiasis y/o nefrocalcinosis, hiperoxaluria, depósitos tisulares de oxalato formando granulomas en formas avanzadas, análisis molecular de ADN y análisis enzimático si procede. Se requiere una alta sospecha diagnóstica, por lo que, desafortunadamente, en muchos casos se diagnostica tras su recidiva en el trasplante renal. El manejo conservador de la enfermedad (alta ingesta líquida, piridoxina e inhibidores de la cristalización) debe ser precoz, para retrasar el daño renal. El tratamiento con diálisis es inefectivo para depurar el exceso de oxalatos. Tras el trasplante renal suele observarse una rápida aparición de los depósitos de oxalato en el injerto y los resultados de esta técnica, salvo excepciones, son desalentadores. El trasplante hepático anticipado, o simultáneo con el trasplante renal cuando ya existe daño irreversible de este órgano, es la opción terapéutica de elección para corregir la enfermedad de base y suprimir la sobreproducción de oxalatos. Dada la condición de enfermedad rara y su heterogeneidad genética y clínica, no es posible obtener evidencias a través de ensayos clínicos aleatorizados. Por lo tanto, las recomendaciones las establecen grupos de expertos apoyados en publicaciones de acreditado rigor científico. En este sentido, un grupo de expertos europeos (OxalEurope) ha elaborado unas recomendaciones diagnósticas y terapéuticas publicadas en 2012.

          Translated abstract

          Primary hyperoxaluria (PH) occurs due to an autosomal recessive hereditary disorder of the metabolism of glyoxylate, which causes excessive oxalate production. The most frequent and serious disorder is due to enzyme deficit of alanine-glyoxylate aminotransferase (PH type I) specific to hepatic peroxisome. As oxalate is not metabolised in humans and is excreted through the kidneys, the kidney is the first organ affected, causing recurrent lithiasis, nephrocalcinosis and early renal failure. With advance of renal failure, particularly in patients on haemodialysis (HD), calcium oxalate is massively deposited in tissues, which is known as oxalosis. Diagnosis is based on family history, the presence of urolithiasis and/or nephrocalcinosis, hyperoxaluria, oxalate deposits in tissue forming granulomas, molecular analysis of DNA and enzyme analysis if applicable. High diagnostic suspicion is required; therefore, unfortunately, in many cases it is diagnosed after its recurrence following kidney transplantation. Conservative management of this disease (high liquid intake, pyridoxine and crystallisation inhibitors) needs to be adopted early in order to delay kidney damage. Treatment by dialysis is ineffective in treating excess oxalate. After the kidney transplant, we normally observe a rapid appearance of oxalate deposits in the graft and the results of this technique are discouraging, with very few exceptions. Pre-emptive liver transplantation, or simultaneous liver and kidney transplants when there is already irreversible damage to the kidney, is the treatment of choice to treat the underlying disease and suppress oxalate overproduction. Given its condition as a rare disease and its genetic and clinical heterogeneity, it is not possible to gain evidence through randomised clinical trials. As a result, the recommendations are established by groups of experts based on publications of renowned scientific rigour. In this regard, a group of European experts (OxalEurope) has drawn up recommendations for diagnosis and treatment, which were published in 2012.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study.

          We define the role of urine volume as a stone risk factor in idiopathic calcium stone disease and test the actual preventive effectiveness of a high water intake. We studied 101 controls and 199 patients from the first idiopathic calcium stone episode. After a baseline study period the stone formers were divided by randomization into 2 groups (1 and 2) and they were followed prospectively for 5 years. Followup in group 1 only involved a high intake of water without any dietetic change, while followup in group 2 did not involve any treatment. Each year clinical, laboratory and radiological evaluation was obtained to determine urinary stone risk profile (including relative supersaturations of calcium oxalate, brushite and uric acid by Equil 2), recurrence rate and mean time to relapse. The original urine volume was lower in male and female stone formers compared to controls (men with calcium oxalate stones 1,057 +/- 238 ml./24 hours versus normal men 1,401 +/- 562 ml./24 hours, p < 0.0001 and women calcium oxalate stones 990 +/- 230 ml./24 hours versus normal women 1,239 +/- 440 ml./24 hours, p < 0.001). During followup recurrences were noted within 5 years in 12 of 99 group 1 patients and in 27 of 100 group 2 patients (p = 0.008). The average interval for recurrences was 38.7 +/- 13.2 months in group 1 and 25.1 +/- 16.4 months in group 2 (p = 0.016). The relative supersaturations for calcium oxalate, brushite and uric acid were much greater in baseline urine of the stone patients in both groups compared to controls. During followup, baseline values decreased sharply only in group 1. Finally the baseline urine in patients with recurrences was characterized by a higher calcium excretion compared to urine of the patients without recurrences in both groups. We conclude that urine volume is a real stone risk factor in nephrolithiasis and that a large intake of water is the initial therapy for prevention of stone recurrences. In cases of hypercalciuria it is suitable to prescribe adjuvant specific diets or drug therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Peroxisomal disorders: the single peroxisomal enzyme deficiencies.

            Peroxisomal disorders are a group of inherited diseases in man in which either peroxisome biogenesis or one or more peroxisomal functions are impaired. The peroxisomal disorders identified to date are usually classified in two groups including: (1) the disorders of peroxisome biogenesis, and (2) the single peroxisomal enzyme deficiencies. This review is focused on the second group of disorders, which currently includes ten different diseases in which the mutant gene affects a protein involved in one of the following peroxisomal functions: (1) ether phospholipid (plasmalogen) biosynthesis; (2) fatty acid beta-oxidation; (3) peroxisomal alpha-oxidation; (4) glyoxylate detoxification, and (5) H2O2 metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion.

              The primary goal of this study was to test the hypothesis that Oxalobacter colonization alters colonic oxalate transport thereby reducing urinary oxalate excretion. In addition, we examined the effects of intraluminal calcium on Oxalobacter colonization and tested the hypothesis that endogenously derived colonic oxalate could be degraded by lyophilized Oxalobacter enzymes targeted to this segment of the alimentary tract. Oxalate fluxes were measured across short-circuited, in vitro preparations of proximal and distal colon removed from Sprague-Dawley rats and placed in Ussing chambers. For these studies, rats were colonized with Oxalobacter either artificially or naturally, and urinary oxalate, creatinine and calcium excretions were determined. Colonized rats placed on various dietary treatment regimens were used to evaluate the impact of calcium on Oxalobacter colonization and whether exogenous or endogenous oxalate influenced colonization. Hyperoxaluric rats with some degree of renal insufficiency were also used to determine the effects of administering encapsulated Oxalobacter lysate on colonic oxalate transport and urinary oxalate excretion. We conclude that in addition to its intraluminal oxalate-degrading capacity, Oxalobacter interacts physiologically with colonic mucosa by inducing enteric oxalate secretion/excretion leading to reduced urinary excretion. Whether Oxalobacter, or products of Oxalobacter, can therapeutically reduce urinary oxalate excretion and influence stone disease warrants further investigation in long-term studies in various patient populations.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Journal
                nefrologia
                Nefrología (Madrid)
                Nefrología (Madr.)
                Sociedad Española de Nefrología (Cantabria, Santander, Spain )
                0211-6995
                1989-2284
                2014
                : 34
                : 3
                : 398-412
                Affiliations
                [02] San Cristóbal de La Laguna orgnameFacultad de Medicina. (San Cristóbal de La Laguna) orgdiv1Servicio de Anatomía Patológica
                [01] San Cristóbal de La Laguna orgnameHospital Universitario de Canarias orgdiv1Servicio de Nefrología
                Article
                S0211-69952014000300017
                10.3265/Nefrologia.pre2014.Jan.12335
                24798559
                b479f6ce-58bd-4863-a749-de4a4b555258

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 International License.

                History
                : 20 January 2014
                : 08 November 2013
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 132, Pages: 15
                Product

                SciELO Spain


                Hiperoxaluria primaria,Estados hiperoxalúricos,Oxalosis,Litiasis renal,Trasplante hepato-renal,Primary hyperoxaluria,Hyperoxaluric states,Renal lithiasis,Liver-renal transplantation

                Comments

                Comment on this article