104
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Voluntary Medical Male Circumcision: Modeling the Impact and Cost of Expanding Male Circumcision for HIV Prevention in Eastern and Southern Africa

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Emmanuel Njeuhmeli and colleagues estimate the impact and cost of scaling up adult medical male circumcision in 13 priority countries in eastern and southern Africa, finding that reaching 80% coverage and maintaining it until 2025 would avert 3.36 million new HIV infections.

          Abstract

          Background

          There is strong evidence showing that voluntary medical male circumcision (VMMC) reduces HIV incidence in men. To inform the VMMC policies and goals of 13 priority countries in eastern and southern Africa, we estimate the impact and cost of scaling up adult VMMC using updated, country-specific data.

          Methods and Findings

          We use the Decision Makers' Program Planning Tool (DMPPT) to model the impact and cost of scaling up adult VMMC in Botswana, Lesotho, Malawi, Mozambique, Namibia, Rwanda, South Africa, Swaziland, Tanzania, Uganda, Zambia, Zimbabwe, and Nyanza Province in Kenya. We use epidemiologic and demographic data from recent household surveys for each country. The cost of VMMC ranges from US$65.85 to US$95.15 per VMMC performed, based on a cost assessment of VMMC services aligned with the World Health Organization's considerations of models for optimizing volume and efficiencies. Results from the DMPPT models suggest that scaling up adult VMMC to reach 80% coverage in the 13 countries by 2015 would entail performing 20.34 million circumcisions between 2011 and 2015 and an additional 8.42 million between 2016 and 2025 (to maintain the 80% coverage). Such a scale-up would result in averting 3.36 million new HIV infections through 2025. In addition, while the model shows that this scale-up would cost a total of US$2 billion between 2011 and 2025, it would result in net savings (due to averted treatment and care costs) amounting to US$16.51 billion.

          Conclusions

          This study suggests that rapid scale-up of VMMC in eastern and southern Africa is warranted based on the likely impact on the region's HIV epidemics and net savings. Scaling up of safe VMMC in eastern and southern Africa will lead to a substantial reduction in HIV infections in the countries and lower health system costs through averted HIV care costs.

          Please see later in the article for the Editors' Summary.

          Editors' Summary

          Background

          Every year, about 2.5 million people (mainly in sub-Saharan Africa) become infected with HIV, the virus that causes AIDS. There is no cure for HIV/AIDS. Consequently, prevention of HIV transmission is very important. Because the most common HIV transmission route is through unprotected sex with an infected partner, individuals can reduce their risk of HIV infection by abstaining from sex, by having only one or a few partners, and by using male or female condoms. There is also strong evidence that voluntary medical male circumcision (VMMC)—the removal of the foreskin, the loose fold of skin that covers the head of the penis—reduces the heterosexual acquisition of HIV in men by about 60%. In 2007, the World Health Organization (WHO) and the Joint United Nations Programme on HIV/AIDS (UNAIDS) recommended that VMMC should be offered to men as part of comprehensive HIV risk reduction programs in settings with generalized HIV epidemics and low levels of male circumcision. They also prioritized 13 countries in eastern and southern Africa for VMMC program scale-up.

          Why Was This Study Done?

          The impact of VMMC scale-up in terms of HIV infections and AIDS deaths averted (epidemiologic impact) is expected to be large, and the intervention should also reduce the costs associated with the treatment, care, and support of infected individuals. However, VMMC scale-up will require substantial funding and considerable effort by countries—many of which have weak health systems and limited resources—to train personnel, equip facilities, and provide the necessary commodities. To support planning for VMMC scale-up, the United States Agency for International Development Health Policy Initiative has collaborated with UNAIDS to develop the Decision Makers' Program Planning Tool (DMPPT), a mathematical model that allows analysts and decision makers to estimate the epidemiologic impact and cost of alternative VMMC scale-up programs. In this study, the researchers use DMPPT to estimate the impact and cost of scaling up adult VMMC in the 13 priority countries in eastern and southern Africa.

          What Did the Researchers Do and Find?

          The researchers derived VMMC unit costs for each priority country based on a cost assessment undertaken in Zimbabwe, one of the first countries to scale up VMMC services using WHO's “Models for Optimizing Volume and Efficiencies” (MOVE) guidelines. They fed these costs and recent epidemiologic data (including HIV infection rates and the effectiveness of VMMC in preventing HIV transmission) and demographic data (including the adult population size and pre-scale-up male circumcision prevalence) collected in each country into the DMPPT, together with information on the lifetime costs of HIV treatment. Results from running the DMPPT model suggest that scaling up adult VMMC to reach 80% coverage in the 13 priority countries by 2015 would require 20.33 million circumcisions to be completed between 2011 and 2015. To maintain this coverage, a further 8.42 million circumcisions would be required between 2016 and 2025. Such a scale-up would avert 3.36 million new HIV infections through 2025 and would cost US$2,000,000,000 between 2011 and 2025. However, it would result in net savings (because of averted treatment and care costs) of US$16,510,000,000.

          What Do These Findings Mean?

          These findings suggest that rapid VMMC scale-up in eastern and southern Africa is warranted, given its likely impact on the region's HIV epidemics and the resultant cost savings. However, the accuracy of these findings depends on the assumptions built into the DMPPT and on the data fed into it. For example, there could be risk behavior changes after circumcision. That is, risky sexual behaviors may increase in men who have been circumcised. However, the researchers show that, except in Rwanda, post-circumcision risk behavior change is unlikely to completely reverse the benefits of VMMC. These modeling results also assume that men seeking out VMMC services are typical of the general male population, but if they are actually at unusually low risk of HIV infection, then the benefits of VMMC reported here are likely to be overestimated. Finally, these findings assume 80% VMMC coverage. This may be optimistic, although results from Kenya indicate that this target is achievable. Thus, countries and their international partners must allocate sufficient resources to VMMC scale-up to achieve high coverage rates if they are to take full advantage of the benefits predicted here for VMMC scale-up.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001132.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Towards an improved investment approach for an effective response to HIV/AIDS.

          Substantial changes are needed to achieve a more targeted and strategic approach to investment in the response to the HIV/AIDS epidemic that will yield long-term dividends. Until now, advocacy for resources has been done on the basis of a commodity approach that encouraged scaling up of numerous strategies in parallel, irrespective of their relative effects. We propose a strategic investment framework that is intended to support better management of national and international HIV/AIDS responses than exists with the present system. Our framework incorporates major efficiency gains through community mobilisation, synergies between programme elements, and benefits of the extension of antiretroviral therapy for prevention of HIV transmission. It proposes three categories of investment, consisting of six basic programmatic activities, interventions that create an enabling environment to achieve maximum effectiveness, and programmatic efforts in other health and development sectors related to HIV/AIDS. The yearly cost of achievement of universal access to HIV prevention, treatment, care, and support by 2015 is estimated at no less than US$22 billion. Implementation of the new investment framework would avert 12·2 million new HIV infections and 7·4 million deaths from AIDS between 2011 and 2020 compared with continuation of present approaches, and result in 29·4 million life-years gained. The framework is cost effective at $1060 per life-year gained, and the additional investment proposed would be largely offset from savings in treatment costs alone. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Male circumcision for the prevention of HSV-2 and HPV infections and syphilis.

            Male circumcision significantly reduced the incidence of human immunodeficiency virus (HIV) infection among men in three clinical trials. We assessed the efficacy of male circumcision for the prevention of herpes simplex virus type 2 (HSV-2) and human papillomavirus (HPV) infections and syphilis in HIV-negative adolescent boys and men. We enrolled 5534 HIV-negative, uncircumcised male subjects between the ages of 15 and 49 years in two trials of male circumcision for the prevention of HIV and other sexually transmitted infections. Of these subjects, 3393 (61.3%) were HSV-2-seronegative at enrollment. Of the seronegative subjects, 1684 had been randomly assigned to undergo immediate circumcision (intervention group) and 1709 to undergo circumcision after 24 months (control group). At baseline and at 6, 12, and 24 months, we tested subjects for HSV-2 and HIV infection and syphilis, along with performing physical examinations and conducting interviews. In addition, we evaluated a subgroup of subjects for HPV infection at baseline and at 24 months. At 24 months, the cumulative probability of HSV-2 seroconversion was 7.8% in the intervention group and 10.3% in the control group (adjusted hazard ratio in the intervention group, 0.72; 95% confidence interval [CI], 0.56 to 0.92; P=0.008). The prevalence of high-risk HPV genotypes was 18.0% in the intervention group and 27.9% in the control group (adjusted risk ratio, 0.65; 95% CI, 0.46 to 0.90; P=0.009). However, no significant difference between the two study groups was observed in the incidence of syphilis (adjusted hazard ratio, 1.10; 95% CI, 0.75 to 1.65; P=0.44). In addition to decreasing the incidence of HIV infection, male circumcision significantly reduced the incidence of HSV-2 infection and the prevalence of HPV infection, findings that underscore the potential public health benefits of the procedure. (ClinicalTrials.gov numbers, NCT00425984 and NCT00124878.) 2009 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Male circumcision, penile human papillomavirus infection, and cervical cancer in female partners.

              It is uncertain whether male circumcision reduces the risks of penile human papillomavirus (HPV) infection in the man and of cervical cancer in his female partner. We pooled data on 1913 couples enrolled in one of seven case-control studies of cervical carcinoma in situ and cervical cancer in five countries. Circumcision status was self-reported, and the accuracy of the data was confirmed by physical examination at three study sites. The presence or absence of penile HPV DNA was assessed by a polymerase-chain-reaction assay in 1520 men and yielded a valid result in the case of 1139 men (74.9 percent). Penile HPV was detected in 166 of the 847 uncircumcised men (19.6 percent) and in 16 of the 292 circumcised men (5.5 percent). After adjustment for age at first intercourse, lifetime number of sexual partners, and other potential confounders, circumcised men were less likely than uncircumcised men to have HPV infection (odds ratio, 0.37; 95 percent confidence interval, 0.16 to 0.85). Monogamous women whose male partners had six or more sexual partners and were circumcised had a lower risk of cervical cancer than women whose partners were uncircumcised (adjusted odds ratio, 0.42; 95 percent confidence interval, 0.23 to 0.79). Results were similar in the subgroup of men in whom circumcision was confirmed by medical examination. Male circumcision is associated with a reduced risk of penile HPV infection and, in the case of men with a history of multiple sexual partners, a reduced risk of cervical cancer in their current female partners.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                November 2011
                November 2011
                29 November 2011
                : 8
                : 11
                : e1001132
                Affiliations
                [1 ]United States Agency for International Development, Washington, District of Columbia, United States of America
                [2 ]Futures Institute, Glastonbury, Connecticut, United States of America
                [3 ]Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [4 ]UNAIDS, Geneva, Switzerland
                [5 ]Office of the U.S. Global AIDS Coordinator, United States Department of State, Washington, District of Columbia, United States of America
                [6 ]World Health Organization, Geneva, Switzerland
                [7 ]Futures Group, Washington, District of Columbia, United States of America
                [8 ]Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland
                Centers for Disease Control and Prevention, United States of America
                Author notes

                Conceived and designed the experiments: EN SF JR LB CH. Performed the experiments: EN SF LB MO VM. Analyzed the data: EN SF LB MO VM. Contributed reagents/materials/analysis tools: EN SF LB MO VM JR DC CH JS NH TF. Wrote the first draft of the manuscript: MO. Contributed to the writing of the manuscript: EN SF JR MO LB NH DC JS TF VM CH. ICMJE criteria for authorship read and met: EN SF JR MO LB NH DC JS TF VM CH. Agree with manuscript results and conclusions: EN SF JR MO LB NH DC JS TF VM CH.

                Article
                PMEDICINE-D-11-01227
                10.1371/journal.pmed.1001132
                3226464
                22140367
                b47d13c6-c40b-476e-9b54-b8e02f8f07ef
                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
                History
                : 26 May 2011
                : 19 October 2011
                Page count
                Pages: 15
                Categories
                Research Article
                Medicine
                Science Policy

                Medicine
                Medicine

                Comments

                Comment on this article