16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Natural selection and the predictability of evolution inTimemastick insects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles.

          Major phenotypic changes evolve in parallel in nature by molecular mechanisms that are largely unknown. Here, we use positional cloning methods to identify the major chromosome locus controlling armor plate patterning in wild threespine sticklebacks. Mapping, sequencing, and transgenic studies show that the Ectodysplasin (EDA) signaling pathway plays a key role in evolutionary change in natural populations and that parallel evolution of stickleback low-plated phenotypes at most freshwater locations around the world has occurred by repeated selection of Eda alleles derived from an ancestral low-plated haplotype that first appeared more than two million years ago. Members of this clade of low-plated alleles are present at low frequencies in marine fish, which suggests that standing genetic variation can provide a molecular basis for rapid, parallel evolution of dramatic phenotypic change in nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The strength of phenotypic selection in natural populations.

            How strong is phenotypic selection on quantitative traits in the wild? We reviewed the literature from 1984 through 1997 for studies that estimated the strength of linear and quadratic selection in terms of standardized selection gradients or differentials on natural variation in quantitative traits for field populations. We tabulated 63 published studies of 62 species that reported over 2,500 estimates of linear or quadratic selection. More than 80% of the estimates were for morphological traits; there is very little data for behavioral or physiological traits. Most published selection studies were unreplicated and had sample sizes below 135 individuals, resulting in low statistical power to detect selection of the magnitude typically reported for natural populations. The absolute values of linear selection gradients |beta| were exponentially distributed with an overall median of 0.16, suggesting that strong directional selection was uncommon. The values of |beta| for selection on morphological and on life-history/phenological traits were significantly different: on average, selection on morphology was stronger than selection on phenology/life history. Similarly, the values of |beta| for selection via aspects of survival, fecundity, and mating success were significantly different: on average, selection on mating success was stronger than on survival. Comparisons of estimated linear selection gradients and differentials suggest that indirect components of phenotypic selection were usually modest relative to direct components. The absolute values of quadratic selection gradients |gamma| were exponentially distributed with an overall median of only 0.10, suggesting that quadratic selection is typically quite weak. The distribution of gamma values was symmetric about 0, providing no evidence that stabilizing selection is stronger or more common than disruptive selection in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              It's about time: the temporal dynamics of phenotypic selection in the wild.

              Selection is a central process in nature. Although our understanding of the strength and form of selection has increased, a general understanding of the temporal dynamics of selection in nature is lacking. Here, we assembled a database of temporal replicates of selection from studies of wild populations to synthesize what we do (and do not) know about the temporal dynamics of selection. Our database contains 5519 estimates of selection from 89 studies, including estimates of both direct and indirect selection as well as linear and nonlinear selection. Morphological traits and studies focused on vertebrates were well-represented, with other traits and taxonomic groups less well-represented. Overall, three major features characterize the temporal dynamics of selection. First, the strength of selection often varies considerably from year to year, although random sampling error of selection coefficients may impose bias in estimates of the magnitude of such variation. Second, changes in the direction of selection are frequent. Third, changes in the form of selection are likely common, but harder to quantify. Although few studies have identified causal mechanisms underlying temporal variation in the strength, direction and form of selection, variation in environmental conditions driven by climatic fluctuations appear to be common and important.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 15 2018
                February 15 2018
                : 359
                : 6377
                : 765-770
                Article
                10.1126/science.aap9125
                29449486
                b48274a1-484f-4ca4-a028-21e6483e469e
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article