34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Angiomotin : An Angiostatin Binding Protein That Regulates Endothelial Cell Migration and Tube Formation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Angiostatin, a circulating inhibitor of angiogenesis, was identified by its ability to maintain dormancy of established metastases in vivo. In vitro, angiostatin inhibits endothelial cell migration, proliferation, and tube formation, and induces apoptosis in a cell type–specific manner. We have used a construct encoding the kringle domains 1–4 of angiostatin to screen a placenta yeast two-hybrid cDNA library for angiostatin-binding peptides. Here we report the identification of angiomotin, a novel protein that mediates angiostatin inhibition of migration and tube formation of endothelial cells. In vivo, angiomotin is expressed in the endothelial cells of capillaries as well as larger vessels of the human placenta. Upon expression of angiomotin in HeLa cells, angiomotin bound and internalized fluorescein-labeled angiostatin. Transfected angiomotin as well as endogenous angiomotin protein were localized to the leading edge of migrating endothelial cells. Expression of angiomotin in endothelial cells resulted in increased cell migration, suggesting a stimulatory role of angiomotin in cell motility. However, treatment with angiostatin inhibited migration and tube formation in angiomotin-expressing cells but not in control cells. These findings indicate that angiostatin inhibits cell migration by interfering with angiomotin activity in endothelial cells.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Angiogenesis in cancer, vascular, rheumatoid and other disease.

          J Folkman (1995)
          Recent discoveries of endogenous negative regulators of angiogenesis, thrombospondin, angiostatin and glioma-derived angiogenesis inhibitory factor, all associated with neovascularized tumours, suggest a new paradigm of tumorigenesis. It is now helpful to think of the switch to the angiogenic phenotype as a net balance of positive and negative regulators of blood vessel growth. The extent to which the negative regulators are decreased during this switch may dictate whether a primary tumour grows rapidly or slowly and whether metastases grow at all.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.

            The phenomenon of inhibition of tumor growth by tumor mass has been repeatedly studied, but without elucidation of a satisfactory mechanism. In our animal model, a primary tumor inhibits its remote metastases. After tumor removal, metastases neovascularize and grow. When the primary tumor is present, metastatic growth is suppressed by a circulating angiogenesis inhibitor. Serum and urine from tumor-bearing mice, but not from controls, specifically inhibit endothelial cell proliferation. The activity copurifies with a 38 kDa plasminogen fragment that we have sequenced and named angiostatin. A corresponding fragment of human plasminogen has similar activity. Systemic administration of angiostatin, but not intact plasminogen, potently blocks neovascularization and growth of metastases. We here show that the inhibition of metastases by a primary mouse tumor is mediated, at least in part, by angiostatin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression.

              In cancer patients, dormant micrometastases are often asymptomatic and clinically undetectable, for months or years, until relapse. We have studied dormant lung metastases under angiogenesis suppression in mice. The metastases exhibited rapid growth when the inhibition of angiogenesis was removed. Tumour cell proliferation, as measured by bromodeoxyuridine incorporation and immunohistochemical staining proliferating cell nuclear antigen, was not significantly different in dormant and growing metastases. However, tumour cells of dormant metastases exhibited a more than threefold higher incidence of apoptosis. These data show that metastases remain dormant when tumour cell proliferation is balanced by an equivalent rate of cell death and suggest that angiogenesis inhibitors control metastatic growth by indirectly increasing apoptosis in tumour cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                19 March 2001
                : 152
                : 6
                : 1247-1254
                Affiliations
                [a ]Center for Genomics Research and Microbiology and Tumor Biology Center, Karolinska Institutet, S-171 76 Stockholm, Sweden
                Article
                0010121
                10.1083/jcb.152.6.1247
                2199208
                11257124
                b4888a0b-7cab-4efe-b091-8b0264203070
                © 2001 The Rockefeller University Press
                History
                : 27 October 2000
                : 12 January 2001
                : 18 January 2001
                Categories
                Original Article

                Cell biology
                receptor,endothelium,neovascularization,plasminogen,migration
                Cell biology
                receptor, endothelium, neovascularization, plasminogen, migration

                Comments

                Comment on this article