3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mesothelial Cells Participate in Endometriosis Fibrogenesis Through Platelet-Induced Mesothelial-Mesenchymal Transition

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context

          While fibrosis in endometriosis has recently loomed prominently, the sources of myofibroblasts, the principal effector cell in fibrotic diseases, remain largely obscure. Mesothelial cells (MCs) can be converted into myofibroblasts through mesothelial-mesenchymal transition (MMT) in many fibrotic diseases and adhesion.

          Objective

          To evaluate whether MCs contribute to the progression and fibrogenesis in endometriosis through MMT.

          Setting, Design, Patients, Intervention, And Main Outcome Measures

          Dual immunofluorescence staining and immunohistochemistry using antibodies against calretinin, Wilms’ tumor-1 (WT-1), and α-smooth muscle actin (α-SMA) were performed on lesion samples from 30 patients each with ovarian endometrioma (OE) and deep endometriosis (DE), and 30 normal endometrial (NE) tissue samples. Human pleural and peritoneal MCs were co-cultured with activated platelets or control medium with and without neutralization of transforming growth factor β1 (TGF-β1) and/or platelet-derived growth factor receptor (PDGFR) and their morphology, proliferation, and expression levels of genes and proteins known to be involved in MMT were evaluated, along with their migratory and invasive propensity, contractility, and collagen production.

          Results

          The number of calretinin/WT-1 and α-SMA dual-positive fibroblasts in OE/DE lesions was significantly higher than NE samples. The extent of lesional fibrosis correlated positively with the lesional α-SMA staining levels. Human MCs co-cultured with activated platelets acquire a morphology suggestive of MMT, concomitant with increased proliferation, loss of calretinin expression, and marked increase in expression of mesenchymal markers. These changes coincided with functional differentiation as reflected by increased migratory and invasive capacity, contractility, and collagen production. Neutralization of TGF-β1 and PDGFR signaling abolished platelet-induced MMT in MCs.

          Conclusions

          MCs contribute to lesional progression and fibrosis through platelet-induced MMT.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal transitions in development and disease.

            The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of fibrosis: therapeutic translation for fibrotic disease.

              Fibrosis is a pathological feature of most chronic inflammatory diseases. Fibrosis, or scarring, is defined by the accumulation of excess extracellular matrix components. If highly progressive, the fibrotic process eventually leads to organ malfunction and death. Fibrosis affects nearly every tissue in the body. Here we discuss how key components of the innate and adaptive immune response contribute to the pathogenesis of fibrosis. We also describe how cell-intrinsic changes in important structural cells can perpetuate the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. Finally, we highlight some of the key mechanisms and pathways of fibrosis that are being targeted as potential therapies for a variety of important human diseases.
                Bookmark

                Author and article information

                Contributors
                Journal
                The Journal of Clinical Endocrinology & Metabolism
                The Endocrine Society
                0021-972X
                1945-7197
                November 2020
                November 01 2020
                November 2020
                November 01 2020
                August 19 2020
                : 105
                : 11
                Affiliations
                [1 ]Shanghai OB/GYN Hospital, Fudan University, Shanghai, China
                [2 ]Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
                [3 ]Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
                Article
                10.1210/clinem/dgaa550
                b48fa241-676e-4640-a98d-b49e2856734e
                © 2020

                https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model

                History

                Comments

                Comment on this article