20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Direct Visualization of Antigen-specific CD8 +T Cells during the Primary Immune Response to Epstein-Barr Virus In Vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Primary infection with virus can stimulate a vigorous cytotoxic T cell response. The magnitude of the antigen-specific component versus the bystander component of a primary T cell response remains controversial. In this study, we have used tetrameric major histocompatibility complex–peptide complexes to directly visualize antigen-specific cluster of differentration (CD)8 + T cells during the primary immune response to Epstein-Barr virus (EBV) infection in humans. We show that massive expansion of activated, antigen-specific T cells occurs during the primary response to this virus. In one individual, T cells specific for a single EBV epitope comprised 44% of the total CD8 + T cells within peripheral blood. The majority of the antigen-specific cells had an activated/memory phenotype, with expression of human histocompatibility leukocyte antigen (HLA) DR, CD38, and CD45RO, downregulation of CD62 leukocyte (CD62L), and low levels of expression of CD45RA. After recovery from AIM, the frequency of antigen-specific T cells fell in most donors studied, although populations of antigen-specific cells continued to be easily detectable for at least 3 yr.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Phenotypic analysis of antigen-specific T lymphocytes.

          Identification and characterization of antigen-specific T lymphocytes during the course of an immune response is tedious and indirect. To address this problem, the peptide-major histocompatability complex (MHC) ligand for a given population of T cells was multimerized to make soluble peptide-MHC tetramers. Tetramers of human lymphocyte antigen A2 that were complexed with two different human immunodeficiency virus (HIV)-derived peptides or with a peptide derived from influenza A matrix protein bound to peptide-specific cytotoxic T cells in vitro and to T cells from the blood of HIV-infected individuals. In general, tetramer binding correlated well with cytotoxicity assays. This approach should be useful in the analysis of T cells specific for infectious agents, tumors, and autoantigens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phenotypic and Functional Separation of Memory and Effector Human CD8+ T Cells

            Human CD8+ memory- and effector-type T cells are poorly defined. We show here that, next to a naive compartment, two discrete primed subpopulations can be found within the circulating human CD8+ T cell subset. First, CD45RA−CD45R0+ cells are reminiscent of memory-type T cells in that they express elevated levels of CD95 (Fas) and the integrin family members CD11a, CD18, CD29, CD49d, and CD49e, compared to naive CD8+ T cells, and are able to secrete not only interleukin (IL) 2 but also interferon γ, tumor necrosis factor α, and IL-4. This subset does not exert cytolytic activity without prior in vitro stimulation but does contain virus-specific cytotoxic T lymphocyte (CTL) precursors. A second primed population is characterized by CD45RA expression with concomitant absence of expression of the costimulatory molecules CD27 and CD28. The CD8+CD45RA+CD27− population contains T cells expressing high levels of CD11a, CD11b, CD18, and CD49d, whereas CD62L (L-selectin) is not expressed. These T cells do not secrete IL-2 or -4 but can produce IFN-γ and TNF-α. In accordance with this finding, cells contained within this subpopulation depend for proliferation on exogenous growth factors such as IL-2 and -15. Interestingly, CD8+CD45RA+CD27− cells parallel effector CTLs, as they abundantly express Fas-ligand mRNA, contain perforin and granzyme B, and have high cytolytic activity without in vitro prestimulation. Based on both phenotypic and functional properties, we conclude that memory- and effector-type T cells can be separated as distinct entities within the human CD8+ T cell subset.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large clonal expansions of CD8+ T cells in acute infectious mononucleosis.

              Primary infection with Epstein-Barr virus often results in the clinical syndrome of acute infectious mononucleosis (glandular fever). This illness is characterized by a striking lymphocytosis, the nature of which has been controversial. We show that large monoclonal or oligoclonal populations of CD8+ T cells account for a significant proportion of the lymphocytosis and provide molecular evidence that these populations have been driven by antigen. The results suggest that the selective and massive expansion of a few dominant clones of CD8+ T cells is an important feature of the primary response to this virus.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                4 May 1998
                : 187
                : 9
                : 1395-1402
                Affiliations
                From the [* ]Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, United Kingdom; and the []Cancer Research Campaign Institute for Cancer Studies, University of Birmingham, Birmingham, B15 2TT, United Kingdom
                Author notes

                Address correspondence to A.J. McMichael, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, OX3 9DS, UK. Phone: 01865-222336; Fax: 01865-222502; E-mail: andrew.mcmichael.ndm@ 123456ox.ac.uk

                Article
                10.1084/jem.187.9.1395
                2212279
                9565632
                b492ca44-1227-477f-87a6-05f8568d7e16
                Copyright @ 1998
                History
                : 5 February 1998
                : 5 March 1998
                Categories
                Article
                Articles

                Medicine
                Medicine

                Comments

                Comment on this article