10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Low temperature reversibly inhibits transport from tubular endosomes to a perinuclear, acidic compartment in African trypanosomes.

      Journal of Cell Science
      Acids, analysis, Albumins, pharmacokinetics, Animals, Biological Markers, Biological Transport, physiology, Cattle, Cell Compartmentation, Chloroquine, pharmacology, Cold Temperature, Concanavalin A, Endocytosis, Endosomes, metabolism, parasitology, Gold, Hot Temperature, Kinetics, Microscopy, Electron, Trypanosoma brucei brucei, ultrastructure

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have used electron microscopy and flow cytofluorimetry to study endocytosis and intracellular transport of fluid phase bovine serum albumen gold complexes and membrane bound concanavalin A through endosomal compartments of bloodstream forms of Trypanosoma brucei rhodesiense. Both markers were rapidly endocytosed from the flagellar pocket. Within 20 minutes at 37 degrees C the markers reached a large, vesicular, perinuclear compartment that stained heavily with the CB1 monoclonal antibody. Neither marker left the flagellar pocket and entered cells at 4 degrees C. When cells were incubated at 12 degrees C, both markers entered the cell and were transported to collecting tubules, a tubular endosomal compartment that receives endocytosed material from coated endocytic vesicles. However, no material was transported from collecting tubules to the late, perinuclear compartment at 12 degrees C. The morphology of collecting tubule membranes was specifically altered at 12 degrees C; tubules became shorter and were arrayed near the flagellar pocket. The morphological alteration and the block in transport of endocytic markers to the perinuclear compartment seen at 12 degrees C were reversed 10 minutes after cells were returned to 37 degrees C. We also used flow cytofluorimetric measurements of pH dependent fluorescence quenching to measure the pH of the terminal endocytic compartment. Fluoresceinated lectins accumulated in a terminal compartment with a pH of 6.0-6.1, a value considerably higher than that of mammalian lysosomes. Fluorescence from fluoresceinated lectins in this terminal endocytic compartment was dequenched when bloodstream forms were incubated in the presence of chloroquine.

          Related collections

          Author and article information

          Comments

          Comment on this article