Blog
About

67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cultivation of Keratinocytes and Fibroblasts in a Three-Dimensional Bovine Collagen-Elastin Matrix (Matriderm ®) and Application for Full Thickness Wound Coverage in Vivo

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          New skin substitutes for burn medicine or reconstructive surgery pose an important issue in plastic surgery. Matriderm ® is a clinically approved three-dimensional bovine collagen-elastin matrix which is already used as a dermal substitute of full thickness burn wounds. The drawback of an avital matrix is the limited integration in full thickness skin defects, depending on the defect size. To further optimize this process, Matriderm ® has also been studied as a matrix for tissue engineering of skin albeit long-term cultivation of the matrix with cells has been difficult. Cells have generally been seeded onto the matrix with high cell loss and minimal time-consuming migration. Here we developed a cell seeded skin equivalent after microtransfer of cells directly into the matrix. First, cells were cultured, and microinjected into Matriderm ®. Then, cell viability in the matrix was determined by histology in vitro. As a next step, the skin substitute was applied in vivo into a full thickness rodent wound model. The wound coverage and healing was observed over a period of two weeks followed by histological examination assessing cell viability, proliferation and integration into the host. Viable and proliferating cells could be found throughout the entire matrix. The presented skin substitute resembles healthy skin in morphology and integrity. Based on this study, future investigations are planned to examine behaviour of epidermal stem cells injected into a collagen-elastin matrix under the aspects of establishment of stem cell niches and differentiation.

          Related collections

          Most cited references 31

          • Record: found
          • Abstract: found
          • Article: not found

          Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds.

          The nonhematopoietic component of bone marrow includes multipotent mesenchymal stem cells (MSC) capable of differentiating into fat, bone, muscle, cartilage, and endothelium. In this report, we describe the cell culture and characterization, delivery system, and successful use of topically applied autologous MSC to accelerate the healing of human and experimental murine wounds. A single bone marrow aspirate of 35-50 mL was obtained from patients with acute wounds (n = 5) from skin cancer surgery and from patients with chronic, long-standing, nonhealing lower extremity wounds (n = 8). Cells were grown in vitro under conditions favoring the propagation of MSC, and flow cytometry and immunostaining showed a profile (CD29+, CD44+, CD105+, CD166+, CD34-, CD45-) highly consistent with published reports of human MSC. Functional induction studies confirmed that the MSC could differentiate into bone, cartilage, and adipose tissue. The cultured autologous MSC were applied up to four times to the wounds using a fibrin polymer spray system with a double-barreled syringe. Both fibrinogen (containing the MSC) and thrombin were diluted to optimally deliver a polymerized gel that immediately adhered to the wound, without run-off, and yet allowing the MSC to remain viable and migrate from the gel. Sequential adjacent sections from biopsy specimens of the wound bed after MSC application showed elongated spindle cells, similar to their in vitro counterparts, which immunostained for MSC markers. Generation of new elastic fibers was evident by both special stains and antibodies to human elastin. The application of cultured cells was safe, without treatment-related adverse events. A strong direct correlation was found between the number of cells applied (greater than 1 x 10(6) cells per cm2 of wound area) and the subsequent decrease in chronic wound size (p = 0.0058). Topical application of autologous MSC also stimulated closure of full-thickness wounds in diabetic mice (db/db). Tracking of green fluorescent protein (GFP)+ MSC in mouse wounds showed GFP+ blood vessels, suggesting that the applied cells may persist as well as act to stimulate the wound repair process. These findings indicate that autologous bone marrow-derived MSC can be safely and effectively delivered to wounds using a fibrin spray system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DAPI: a DNA-specific fluorescent probe.

             J Kapuscinski (1995)
            DAPI (4',6-diamidino-2-phenylindole) is a DNA-specific probe which forms a fluorescent complex by attaching in the minor grove of A-T rich sequences of DNA. It also forms nonfluorescent intercalative complexes with double-stranded nucleic acids. The physicochemical properties of the dye and its complexes with nucleic acids and history of the development of this dye as a biological stain are described. The application of DAPI as a DNA-specific probe for flow cytometry, chromosome staining, DNA visualization and quantitation in histochemistry and biochemistry is reviewed. The mechanisms of DAPI-nucleic acid complex formation including minor groove binding, intercalation and condensation are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F.

              The E2F transcription factors are essential regulators of cell growth in multicellular organisms, controlling the expression of a number of genes whose products are involved in DNA replication and cell proliferation. In Saccharomyces cerevisiae, the MBF and SBF transcription complexes have functions similar to those of E2F proteins in higher eukaryotes, by regulating the timed expression of genes implicated in cell cycle progression and DNA synthesis. The CDC6 gene is a target for MBF and SBF-regulated transcription. S. cerevisiae Cdc6p induces the formation of the prereplication complex and is essential for initiation of DNA replication. Interestingly, the Cdc6p homolog in Schizosaccharomyces pombe, Cdc18p, is regulated by DSC1, the S. pombe homolog of MBF. By cloning the promoter for the human homolog of Cdc6p and Cdc18p, we demonstrate here that the cell cycle-regulated transcription of this gene is dependent on E2F. In vivo footprinting data demonstrate that the identified E2F sites are occupied in resting cells and in exponentially growing cells, suggesting that E2F is responsible for downregulating the promoter in early phases of the cell cycle and the subsequent upregulation when cells enter S phase. Our data also demonstrate that the human CDC6 protein (hCDC6) is essential and limiting for DNA synthesis, since microinjection of an anti-CDC6 rabbit antiserum blocks DNA synthesis and CDC6 cooperates with cyclin E to induce entry into S phase in cotransfection experiments. Furthermore, E2F is sufficient to induce expression of the endogenous CDC6 gene even in the absence of de novo protein synthesis. In conclusion, our results provide a direct link between regulated progression through G1 controlled by the pRB pathway and the expression of proteins essential for the initiation of DNA replication.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                July 2013
                11 July 2013
                : 14
                : 7
                : 14460-14474
                Affiliations
                Department of Plastic, Hand- and Reconstructive Surgery, Hannover Medical School, Hannover D-30659, Germany; E-Mails: jasper.killat@ 123456gmail.com (J.K.); reimers.kerstin@ 123456mh-hannover.de (K.R.); claudia.choi@ 123456klinikum-bremen-mitte.de (C.Y.C.) jahn.sabrina@ 123456mh-hannover.de (S.J.); vogt.peter@ 123456mh-hannover.de (P.M.V.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: radtke.christine@ 123456mh-hannover.de ; Tel.: +49-511-532-8864; Fax: +49-511-532-8890.
                Article
                ijms-14-14460
                10.3390/ijms140714460
                3742254
                23852021
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                Categories
                Article

                Comments

                Comment on this article