Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

From Quantum Chaos and Eigenstate Thermalization to Statistical Mechanics and Thermodynamics

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      This review gives a pedagogical introduction to the eigenstate thermalization hypothesis (ETH), its basis, and its implications to statistical mechanics and thermodynamics. In the first part, ETH is introduced as a natural extension of ideas from quantum chaos and random matrix theory (RMT). To this end, we present a brief overview of classical and quantum chaos, as well as RMT and some of its most important predictions. The latter include the statistics of energy levels, eigenstate components, and matrix elements of observables. Building on these, we introduce the ETH and show that it allows one to describe thermalization in isolated chaotic systems without invoking the notion of an external bath. We examine numerical evidence of eigenstate thermalization from studies of many-body lattice systems. We also introduce the concept of a quench as a means of taking isolated systems out of equilibrium, and discuss results of numerical experiments on quantum quenches. The second part of the review explores the implications of quantum chaos and ETH to thermodynamics. Basic thermodynamic relations are derived, including the second law of thermodynamics, the fundamental thermodynamic relation, fluctuation theorems, and the Einstein and Onsager relations. In particular, it is shown that quantum chaos allows one to prove these relations for individual Hamiltonian eigenstates and thus extend them to arbitrary stationary statistical ensembles. We then show how one can use these relations to obtain nontrivial universal energy distributions in continuously driven systems. At the end of the review, we briefly discuss the relaxation dynamics and description after relaxation of integrable quantum systems, for which ETH is violated. We introduce the concept of the generalized Gibbs ensemble, and discuss its connection with ideas of prethermalization in weakly interacting systems.

      Related collections

      Most cited references 52

      • Record: found
      • Abstract: found
      • Article: not found

      A quantum Newton's cradle.

      It is a fundamental assumption of statistical mechanics that a closed system with many degrees of freedom ergodically samples all equal energy points in phase space. To understand the limits of this assumption, it is important to find and study systems that are not ergodic, and thus do not reach thermal equilibrium. A few complex systems have been proposed that are expected not to thermalize because their dynamics are integrable. Some nearly integrable systems of many particles have been studied numerically, and shown not to ergodically sample phase space. However, there has been no experimental demonstration of such a system with many degrees of freedom that does not approach thermal equilibrium. Here we report the preparation of out-of-equilibrium arrays of trapped one-dimensional (1D) Bose gases, each containing from 40 to 250 (87)Rb atoms, which do not noticeably equilibrate even after thousands of collisions. Our results are probably explainable by the well-known fact that a homogeneous 1D Bose gas with point-like collisional interactions is integrable. Until now, however, the time evolution of out-of-equilibrium 1D Bose gases has been a theoretically unsettled issue, as practical factors such as harmonic trapping and imperfectly point-like interactions may compromise integrability. The absence of damping in 1D Bose gases may lead to potential applications in force sensing and atom interferometry.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        A universal instability of many-dimensional oscillator systems

          Bookmark
          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Thermalization and its mechanism for generic isolated quantum systems

          Time dynamics of isolated many-body quantum systems has long been an elusive subject. Very recently, however, meaningful experimental studies of the problem have finally become possible, stimulating theoretical interest as well. Progress in this field is perhaps most urgently needed in the foundations of quantum statistical mechanics. This is so because in generic isolated systems, one expects nonequilibrium dynamics on its own to result in thermalization: a relaxation to states where the values of macroscopic quantities are stationary, universal with respect to widely differing initial conditions, and predictable through the time-tested recipe of statistical mechanics. However, it is not obvious what feature of many-body quantum mechanics makes quantum thermalization possible, in a sense analogous to that in which dynamical chaos makes classical thermalization possible. For example, dynamical chaos itself cannot occur in an isolated quantum system, where time evolution is linear and the spectrum is discrete. Underscoring that new rules could apply in this case, some recent studies even suggested that statistical mechanics may give wrong predictions for the outcomes of relaxation in such systems. Here we demonstrate that an isolated generic quantum many-body system does in fact relax to a state well-described by the standard statistical mechanical prescription. Moreover, we show that time evolution itself plays a merely auxiliary role in relaxation and that thermalization happens instead at the level of individual eigenstates, as first proposed by J.M. Deutsch and M. Srednicki. A striking consequence of this eigenstate thermalization scenario is that the knowledge of a single many-body eigenstate suffices to compute thermal averages-any eigenstate in the microcanonical energy window will do, as they all give the same result.
            Bookmark

            Author and article information

            Journal
            2015-09-21
            2016-08-01
            1509.06411
            10.1080/00018732.2016.1198134

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            Adv. Phys. 65, 239 (2016)
            130 pages, 36 figures, as published
            cond-mat.stat-mech cond-mat.quant-gas cond-mat.str-el quant-ph

            Comments

            Comment on this article