161
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of selected local medicinal plants on the asexual blood stage of chloroquine resistant Plasmodium falciparum

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The development of resistant to current antimalarial drugs is a major challenge in achieving malaria elimination status in many countries. Therefore there is a need for new antimalarial drugs. Medicinal plants have always been the major source for the search of new antimalarial drugs. The aim of this study was to screen selected Malaysian medicinal plants for their antiplasmodial properties.

          Methods

          Each part of the plants were processed, defatted by hexane and sequentially extracted with dichloromethane, methanol and water. The antiplasmodial activities of 54 plant extracts from 14 species were determined by Plasmodium falciparum Histidine Rich Protein II ELISA technique. In order to determine the selectivity index (SI), all plant extracts demonstrating a good antiplasmodial activity were tested for their cytotoxicity activity against normal Madin-Darby Bovine Kidney (MDBK) cell lines by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay.

          Results

          Twenty three extracts derived from Curcuma zedoaria (rhizome), Curcuma aeruginosa (rhizome), Alpinia galanga (rhizome), Morinda elliptica (leaf), Curcuma mangga (rhizome), Elephantopus scaber (leaf), Vitex negundo (leaf), Brucea javanica (leaf, root and seed), Annona muricata (leaf), Cinnamomun iners (leaf) and Vernonia amygdalina (leaf) showed promising antiplasmodial activities against the blood stage chloroquine resistant P. falciparum (EC 50 < 10 μg/ml) with negligible toxicity effect to MDBK cells in vitro (SI ≥10).

          Conclusion

          The extracts belonging to eleven plant species were able to perturb the growth of chloroquine resistant P. falciparum effectively. The findings justified the bioassay guided fractionation on these plants for the search of potent antimalarial compounds or formulation of standardized extracts which may enhance the antimalarial effect in vitro and in vivo.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study

          Summary Background Artemisinin-resistant falciparum malaria has arisen in western Cambodia. A concerted international effort is underway to contain artemisinin-resistant Plasmodium falciparum, but containment strategies are dependent on whether resistance has emerged elsewhere. We aimed to establish whether artemisinin resistance has spread or emerged on the Thailand–Myanmar (Burma) border. Methods In malaria clinics located along the northwestern border of Thailand, we measured six hourly parasite counts in patients with uncomplicated hyperparasitaemic falciparum malaria (≥4% infected red blood cells) who had been given various oral artesunate-containing regimens since 2001. Parasite clearance half-lives were estimated and parasites were genotyped for 93 single nucleotide polymorphisms. Findings 3202 patients were studied between 2001 and 2010. Parasite clearance half-lives lengthened from a geometric mean of 2·6 h (95% CI 2·5–2·7) in 2001, to 3·7 h (3·6–3·8) in 2010, compared with a mean of 5·5 h (5·2–5·9) in 119 patients in western Cambodia measured between 2007 and 2010. The proportion of slow-clearing infections (half-life ≥6·2 h) increased from 0·6% in 2001, to 20% in 2010, compared with 42% in western Cambodia between 2007 and 2010. Of 1583 infections genotyped, 148 multilocus parasite genotypes were identified, each of which infected between two and 13 patients. The proportion of variation in parasite clearance attributable to parasite genetics increased from 30% between 2001 and 2004, to 66% between 2007 and 2010. Interpretation Genetically determined artemisinin resistance in P falciparum emerged along the Thailand–Myanmar border at least 8 years ago and has since increased substantially. At this rate of increase, resistance will reach rates reported in western Cambodia in 2–6 years. Funding The Wellcome Trust and National Institutes of Health.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations.

            Plasmodium falciparum chloroquine resistance is a major cause of worldwide increases in malaria mortality and morbidity. Recent laboratory and clinical studies have associated chloroquine resistance with point mutations in the gene pfcrt. However, direct proof of a causal relationship has remained elusive and most models have posited a multigenic basis of resistance. Here, we provide conclusive evidence that mutant haplotypes of the pfcrt gene product of Asian, African, or South American origin confer chloroquine resistance with characteristic verapamil reversibility and reduced chloroquine accumulation. pfcrt mutations increased susceptibility to artemisinin and quinine and minimally affected amodiaquine activity; hence, these antimalarials warrant further investigation as agents to control chloroquine-resistant falciparum malaria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions

              Background In traditional medicine whole plants or mixtures of plants are used rather than isolated compounds. There is evidence that crude plant extracts often have greater in vitro or/and in vivo antiplasmodial activity than isolated constituents at an equivalent dose. The aim of this paper is to review positive interactions between components of whole plant extracts, which may explain this. Methods Narrative review. Results There is evidence for several different types of positive interactions between different components of medicinal plants used in the treatment of malaria. Pharmacodynamic synergy has been demonstrated between the Cinchona alkaloids and between various plant extracts traditionally combined. Pharmacokinetic interactions occur, for example between constituents of Artemisia annua tea so that its artemisinin is more rapidly absorbed than the pure drug. Some plant extracts may have an immunomodulatory effect as well as a direct antiplasmodial effect. Several extracts contain multidrug resistance inhibitors, although none of these has been tested clinically in malaria. Some plant constituents are added mainly to attenuate the side-effects of others, for example ginger to prevent nausea. Conclusions More clinical research is needed on all types of interaction between plant constituents. This could include clinical trials of combinations of pure compounds (such as artemisinin + curcumin + piperine) and of combinations of herbal remedies (such as Artemisia annua leaves + Curcuma longa root + Piper nigum seeds). The former may enhance the activity of existing pharmaceutical preparations, and the latter may improve the effectiveness of existing herbal remedies for use in remote areas where modern drugs are unavailable.
                Bookmark

                Author and article information

                Contributors
                eezoo79@gmail.com
                adlinafzan@imr.gov.my
                rosnani1819@gmail.com
                fasihah.amir@gmail.com
                mohdisa@imr.gov.my
                sitizahari@gmail.com
                noorrain@imr.gov.my
                zakiah@imr.gov.my
                Journal
                BMC Complement Altern Med
                BMC Complement Altern Med
                BMC Complementary and Alternative Medicine
                BioMed Central (London )
                1472-6882
                15 December 2014
                2014
                : 14
                : 1
                : 492
                Affiliations
                Herbal Medicine Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
                Article
                2073
                10.1186/1472-6882-14-492
                4300612
                25510573
                b4b27a29-3958-4a28-a1f5-a90e0171186d
                © Mohd Abd Razak et al.; licensee BioMed Central. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 3 March 2014
                : 11 December 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article