29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of activation of bacterial cellulose synthase by cyclic-di-GMP

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bacterial signaling molecule cyclic-di-GMP stimulates the synthesis of bacterial cellulose, frequently found in biofilms. Bacterial cellulose is synthesized and translocated across the inner membrane by a complex of the cellulose synthase BcsA and BcsB subunits. Here we present crystal structures of the cyclic-di-GMP-activated BcsA–B complex. The structures reveal that cyclic-di-GMP releases an auto-inhibited state of the enzyme by breaking a salt bridge which otherwise tethers a conserved gating loop that controls access to and substrate coordination at the active site. Disrupting the salt bridge by mutagenesis generates a constitutively active cellulose synthase. Additionally, the cyclic-di-GMP activated BcsA–B complex contains a nascent cellulose polymer whose terminal glucose unit rests at a novel location above BcsA’s active site where it is positioned for catalysis. Our mechanistic insights are the first examples of how cyclic-di-GMP allosterically modulates enzymatic functions.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Linking crystallographic model and data quality.

          In macromolecular x-ray crystallography, refinement R values measure the agreement between observed and calculated data. Analogously, R(merge) values reporting on the agreement between multiple measurements of a given reflection are used to assess data quality. Here, we show that despite their widespread use, R(merge) values are poorly suited for determining the high-resolution limit and that current standard protocols discard much useful data. We introduce a statistic that estimates the correlation of an observed data set with the underlying (not measurable) true signal; this quantity, CC*, provides a single statistically valid guide for deciding which data are useful. CC* also can be used to assess model and data quality on the same scale, and this reveals when data quality is limiting model improvement.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The integration of macromolecular diffraction data.

            The objective of any modern data-processing program is to produce from a set of diffraction images a set of indices (hkls) with their associated intensities (and estimates of their uncertainties), together with an accurate estimate of the crystal unit-cell parameters. This procedure should not only be reliable, but should involve an absolute minimum of user intervention. The process can be conveniently divided into three stages. The first (autoindexing) determines the unit-cell parameters and the orientation of the crystal. The unit-cell parameters may indicate the likely Laue group of the crystal. The second step is to refine the initial estimate of the unit-cell parameters and also the crystal mosaicity using a procedure known as post-refinement. The third step is to integrate the images, which consists of predicting the positions of the Bragg reflections on each image and obtaining an estimate of the intensity of each reflection and its uncertainty. This is carried out while simultaneously refining various detector and crystal parameters. Basic features of the algorithms employed for each of these three separate steps are described, principally with reference to the program MOSFLM.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilm infections, their resilience to therapy and innovative treatment strategies.

              Biofilm formation of microorganisms causes persistent tissue and foreign body infections resistant to treatment with antimicrobial agents. Up to 80% of human bacterial infections are biofilm associated; such infections are most frequently caused by Staphylococcus epidermidis, Pseudomonas aeruginosa, Staphylococcus aureus and Enterobacteria such as Escherichia coli. The accurate diagnosis of biofilm infections is often difficult, which prevents the appropriate choice of treatment. As biofilm infections significantly contribute to patient morbidity and substantial healthcare costs, novel strategies to treat these infections are urgently required. Nucleotide second messengers, c-di-GMP, (p)ppGpp and potentially c-di-AMP, are major regulators of biofilm formation and associated antibiotic tolerance. Consequently, different components of these signalling networks might be appropriate targets for antibiofilm therapy in combination with antibiotic treatment strategies. In addition, cyclic di-nucleotides are microbial-associated molecular patterns with an almost universal presence. Their conserved structures sensed by the eukaryotic host have a widespread effect on the immune system. Thus, cyclic di-nucleotides are also potential immunotherapeutic agents to treat antibiotic-resistant bacterial infections. © 2012 The Association for the Publication of the Journal of Internal Medicine.
                Bookmark

                Author and article information

                Journal
                101186374
                31761
                Nat Struct Mol Biol
                Nat. Struct. Mol. Biol.
                Nature structural & molecular biology
                1545-9993
                1545-9985
                19 April 2014
                06 April 2014
                May 2014
                01 November 2014
                : 21
                : 5
                : 489-496
                Affiliations
                [1 ]Center for Membrane Biology, Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
                Author notes
                Article
                NIHMS573167
                10.1038/nsmb.2803
                4013215
                24704788
                b4b32de1-1cc8-4972-a344-dae2c65b503e
                History
                Categories
                Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article