86
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CaMK4 Gene Deletion Induces Hypertension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The expression of calcium/calmodulin-dependent kinase IV (CaMKIV) was hitherto thought to be confined to the nervous system. However, a recent genome-wide analysis indicated an association between hypertension and a single-nucleotide polymorphism (rs10491334) of the human CaMKIV gene ( CaMK4 ), which suggests a role for this kinase in the regulation of vascular tone.

          Methods and Results

          To directly assess the role of CaMKIV in hypertension, we characterized the cardiovascular phenotype of CaMK4 −/− mice. They displayed a typical hypertensive phenotype, including high blood pressure levels, cardiac hypertrophy, vascular and kidney damage, and reduced tolerance to chronic ischemia and myocardial infarction compared with wild-type littermates. Interestingly, in vitro experiments showed the ability of this kinase to activate endothelial nitric oxide synthase. Eventually, in a population study, we found that the rs10491334 variant associates with a reduction in the expression levels of CaMKIV in lymphocytes from hypertensive patients.

          Conclusions

          Taken together, our results provide evidence that CaMKIV plays a pivotal role in blood pressure regulation through the control of endothelial nitric oxide synthase activity. ( J Am Heart Assoc. 2012;1:e001081 doi: 10.1161/JAHA.112.001081.)

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC).

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypertension in mice lacking the gene for endothelial nitric oxide synthase.

            Nitric oxide (NO), a potent vasodilator produced by endothelial cells, is thought to be the endothelium-dependent relaxing factor (EDRF) which mediates vascular relaxation in response to acetylcholine, bradykinin and substance P in many vascular beds. NO has been implicated in the regulation of blood pressure and regional blood flow, and also affects vascular smooth-muscle proliferation and inhibits platelet aggregation and leukocyte adhesion. Abnormalities in endothelial production of NO occur in atherosclerosis, diabetes and hypertension. Pharmacological blockade of NO production with arginine analogues such as L-nitroarginine (L-NA) or L-N-arginine methyl ester affects multiple isoforms of nitric oxide synthase (NOS), and so cannot distinguish their physiological roles. To study the role of endothelial NOS (eNOS) in vascular function, we disrupted the gene encoding eNOS in mice. Endothelium-derived relaxing factor activity, as assayed by acetylcholine-induced relaxation, is absent, and the eNOS mutant mice are hypertensive. Thus eNOS mediates basal vasodilation. Responses to NOS blockade in the mutant mice suggest that non-endothelial isoforms of NOS may be involved in maintaining blood pressure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species-activated Ca/calmodulin kinase IIδ is required for late I(Na) augmentation leading to cellular Na and Ca overload.

              In heart failure Ca/calmodulin kinase (CaMK)II expression and reactive oxygen species (ROS) are increased. Both ROS and CaMKII can increase late I(Na) leading to intracellular Na accumulation and arrhythmias. It has been shown that ROS can activate CaMKII via oxidation. We tested whether CaMKIIδ is required for ROS-dependent late I(Na) regulation and whether ROS-induced Ca released from the sarcoplasmic reticulum (SR) is involved. 40 μmol/L H(2)O(2) significantly increased CaMKII oxidation and autophosphorylation in permeabilized rabbit cardiomyocytes. Without free [Ca](i) (5 mmol/L BAPTA/1 mmol/L Br(2)-BAPTA) or after SR depletion (caffeine 10 mmol/L, thapsigargin 5 μmol/L), the H(2)O(2)-dependent CaMKII oxidation and autophosphorylation was abolished. H(2)O(2) significantly increased SR Ca spark frequency (confocal microscopy) but reduced SR Ca load. In wild-type (WT) mouse myocytes, H(2)O(2) increased late I(Na) (whole cell patch-clamp). This increase was abolished in CaMKIIδ(-/-) myocytes. H(2)O(2)-induced [Na](i) and [Ca](i) accumulation (SBFI [sodium-binding benzofuran isophthalate] and Indo-1 epifluorescence) was significantly slowed in CaMKIIδ(-/-) myocytes (versus WT). CaMKIIδ(-/-) myocytes developed significantly less H(2)O(2)-induced arrhythmias and were more resistant to hypercontracture. Opposite results (increased late I(Na), [Na](i) and [Ca](i) accumulation) were obtained by overexpression of CaMKIIδ in rabbit myocytes (adenoviral gene transfer) reversible with CaMKII inhibition (10 μmol/L KN93 or 0.1 μmol/L AIP [autocamtide 2-related inhibitory peptide]). Free [Ca](i) and a functional SR are required for ROS activation of CaMKII. ROS-activated CaMKIIδ enhances late I(Na), which may lead to cellular Na and Ca overload. This may be of relevance in hear failure, where enhanced ROS production meets increased CaMKII expression.
                Bookmark

                Author and article information

                Journal
                J Am Heart Assoc
                J Am Heart Assoc
                ahaoa
                jah3
                Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease
                Blackwell Publishing Ltd (Oxford, UK )
                2047-9980
                August 2012
                24 August 2012
                : 1
                : 4
                : e001081
                Affiliations
                Department of Clinical Medicine, Cardiovascular and Immunologic Sciences, “Federico II” University of Naples, Naples, Italy (G.S., E.C., D.S., C.D.G., A.A., B.T.)
                Department of Cellular and Molecular Biology and Pathology, “Federico II” University of Naples, Naples, Italy (S.M., A.S.M., M.I.)
                Istituto clinico Humanitas IRCCS and Istituto Ricerca Genetica Biomedica, National Research Council, Rozzano, Italy (G.C.)
                Multimedica Research Hospital, Milan, Italy (G.C., A.P., G.I.)
                Department of Medicine and Surgery, University of Salerno, Salerno, Italy (A.P., G.I.)
                Author notes
                Correspondence to: Guido Iaccarino, MD, PhD, FESC, Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy. E-mail giaccarino@ 123456unisa.it
                Article
                jah359
                10.1161/JAHA.112.001081
                3487344
                23130158
                b4b95d4a-bba4-4622-9886-5e58e8346053
                © 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell.

                This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 17 April 2012
                : 21 June 2012
                Categories
                Original Research
                Hypertension

                Cardiovascular Medicine
                angiogenesis,hypertrophy,hypertension,arrhythmia,endothelium
                Cardiovascular Medicine
                angiogenesis, hypertrophy, hypertension, arrhythmia, endothelium

                Comments

                Comment on this article