7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How I set up positive end-expiratory pressure: evidence- and physiology-based!

      editorial
      1 ,   1 , 2 ,
      Critical Care
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Positive end-expiratory pressure (PEEP) is a cornerstone treatment for critically ill patients, with beneficial effects for acute respiratory distress syndrome (ARDS). In ARDS, PEEP prevents alveolar collapse during expiration and counteracts increased surface tension due to surfactant impairment, alveolar over-deflation, and superimposed pressure. These mechanisms contribute to a reduction in intrapulmonary shunting. Furthermore, alveolar recruitment maintained through PEEP may translate into a higher end-expiratory lung volume (EELV), which often leads to better compliance of the respiratory system (CRS) and therefore a reduction in the driving pressure (DP), both of which are associated with higher survival rates [1]. Moreover, alveolar stability protects against intra-tidal recruitment/derecruitment (i.e., atelectrauma) [2] and imposed mechanical stresses and inflammation (i.e., biotrauma) [3], and it reduces ventilation heterogeneity [4]. Advantages of PEEP should be balanced against its potential disadvantages, namely, a reduction in cardiac output, an increase in pulmonary vascular resistance and alveolar dead space, and the risk of regional over-inflation [5]. Recommended PEEP titration Current guidelines concerning moderate or severe ARDS recommend using higher rather than lower PEEP levels [6]. This recommendation is based on meta-analysis of individual patient data [7]. Furthermore, a subsequent ancillary analysis of LUNG SAFE reported that higher PEEP levels are associated with improved survival [8]. How do we set up PEEP We present a PEEP titration strategy that relies heavily on physiological considerations, which is applied at our center. This opinion-based editorial is based on our interpretation of the evidence-based medical literature and on clinical experience, without presumptions of exhaustiveness or superiority to other strategies. For moderate and severe ARDS, the guidelines [6] recommend higher PEEP levels without specifying absolute values or, more importantly, what methodology to apply. Therefore, for patients with moderate or severe ARDS, we typically aim to increase PEEP levels, if hemodynamic conditions allow it, through closely monitoring the individual response and focusing on two main targets: driving pressure and oxygenation (Fig. 1). Fig. 1 Evidence-based decision-making flow chart for patients with ARDS requiring treatment using PEEP, according to patient physiological readouts. The approach we use to set up PEEP is applied either to patients in a supine position or to those with moderate-to-severe ARDS and prone positioning. Each step lasts normally 10 to 30 min. The area in light blue indicates that FiO2 remains constant throughout the steps. After PEEP titration FiO2 can be decreased (or increased) to target normoxia. Pre-existing barotrauma and (according to some authors) elevated intracranial pressure should discourage from application of high PEEP. Abbreviations and symbols: ARDS, acute respiratory distress syndrome; CRS, compliance of the respiratory system; CW, chest wall; EIT, electrical impedance tomography; FiO2, inspiratory oxygen fraction; PEEP, positive end-expiratory pressure; Pes, esophageal pressure; RM, recruitment maneuver; RV, right ventricle; US, ultrasound; ↑, increase; ↓, decrease; =, equal Driving pressure CRS is proportional to the “baby lung” size [9]; therefore, as a good proxy of EELV (albeit possibly influenced by other factors, such as chest-wall compliance), CRS tends to increase with recruitment but decreases again once over-inflation begins. For this reason, changes in CRS are a key element for PEEP titration. At the same tidal volume (V T), any change in CRS will be reflected in the driving pressure (DP) [10], or if pressure control is used, V T increases for the same DP. We increase PEEP levels aiming to observe a decrease in DP at the same V T, likely indicating recruitment (not necessarily to a fully open lung). To facilitate this process, we could use a moderate recruitment maneuver (RM) (e.g., 40 cmH2O for 20 s) before increasing PEEP. An RM (rather than to correct hypoxemia) might work as a diagnostic tool (diagnostic RM) to explore the potential for lung recruitability, leading to an increase in PEEP levels in responders compared with non-responders. Simultaneously, if CRS decreases when PEEP is increased, indicating overdistension, we reduce either PEEP or V T (if feasible in terms of CO2 elimination and respiratory rate). For a safe plateau pressure (P plat), one size (i.e., 30 cmH2O) does not fit all, and if overdistension is an issue, our safety threshold for P plat is decreased. Oxygenation We always verify the response to gas exchange, primarily, an increase in PaO2 at a constant inspiratory FiO2, with constant or decreasing PaCO2. Although PaO2/FiO2 is a poor proxy for alveolar recruitment, patients who have responded to an increased PEEP with improved oxygenation have been reported to have a reduced risk of death [11]. As such, we prefer to uncouple the PEEP and FiO2 settings. Patients do not always show an improvement in oxygenation with higher PEEP levels. In this scenario, a strategy that mandates simultaneous increase of these parameters (e.g., PEEP/FiO2 tables) would recommend a further PEEP increase combined with FiO2. Finally, an increase in PaCO2 levels in relation to a PEEP increase should be an immediate alert for a risk of overdistension. Of late, and more frequently, we are taking advantage of bedside electrical impedance tomography (EIT) to corroborate our PEEP titration procedure. We propose a 2-step strategy. First, we perform a diagnostic RM to evaluate the potential for lung recruitment. Second, we increase the PEEP level in small increments (e.g., 2 cmH2O) until it is sufficient to maintain EELV stability, according to the end-expiratory lung impedance signal. This approach leads to an improvement in arterial oxygenation and a reduction in the DP and provides regional information concerning the balance between alveolar overdistension and collapse [12]. We typically confine the measurement of esophageal pressure to selected clinical conditions (Fig. 1). Controversies concerning the use of higher PEEP levels The described approach might appear to be contradictory to the recent literature [13] reporting that patients receiving an RM followed by a decremental PEEP trial, according to CRS, have increased mortality rates. However, we consider that this study does not invalidate the concept of higher PEEP levels being associated with a lower DP, as it combined other procedures that might have contributed to the higher mortality, such as an aggressive RM of up to 60 cmH2O (reduced to 50 cmH2O after 50% enrollment) and lasting several minutes overall, which required important fluid expansion, neuromuscular blocking agents, and an additional RM performed after PEEP titration. Furthermore, the decision to set PEEP at 2 cmH2O above the best CRS likely led to regional overdistension of the non-dependent lung. Future perspectives and conclusion It is known that a high PEEP level does not fit all; therefore, innovative concepts such as the different responses of hypo- and hyper-inflammatory ARDS phenotypes to PEEP [14] and the use of population enrichment for inclusion in trials [15] are encouraging. In the meantime, we set PEEP levels for patients with moderate or severe ARDS that aim for a moderate reasonable recruitment, given the challenges of full lung recruitment, according to incremental PEEP steps (possibly interspersed with short diagnostic RMs) and seek improvements in functional and physiologic readouts, such as CRS, gas exchange, and EIT.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          The concept of "baby lung".

          The "baby lung" concept originated as an offspring of computed tomography examinations which showed in most patients with acute lung injury/acute respiratory distress syndrome that the normally aerated tissue has the dimensions of the lung of a 5- to 6-year-old child (300-500 g aerated tissue). The respiratory system compliance is linearly related to the "baby lung" dimensions, suggesting that the acute respiratory distress syndrome lung is not "stiff" but instead small, with nearly normal intrinsic elasticity. Initially we taught that the "baby lung" is a distinct anatomical structure, in the nondependent lung regions. However, the density redistribution in prone position shows that the "baby lung" is a functional and not an anatomical concept. This provides a rational for "gentle lung treatment" and a background to explain concepts such as baro- and volutrauma. From a physiological perspective the "baby lung" helps to understand ventilator-induced lung injury. In this context, what appears dangerous is not the V(T)/kg ratio but instead the V(T)/"baby lung" ratio. The practical message is straightforward: the smaller the "baby lung," the greater is the potential for unsafe mechanical ventilation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study.

            To improve the outcome of the acute respiratory distress syndrome (ARDS), one needs to identify potentially modifiable factors associated with mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lung opening and closing during ventilation of acute respiratory distress syndrome.

              The effects of high positive end-expiratory pressure (PEEP) strictly depend on lung recruitability, which varies widely during acute respiratory distress syndrome (ARDS). Unfortunately, increasing PEEP may lead to opposing effects on two main factors potentially worsening the lung injury, that is, alveolar strain and intratidal opening and closing, being detrimental (increasing the former) or beneficial (decreasing the latter). To investigate how lung recruitability influences alveolar strain and intratidal opening and closing after the application of high PEEP. We analyzed data from a database of 68 patients with acute lung injury or ARDS who underwent whole-lung computed tomography at 5, 15, and 45 cm H(2)O airway pressure. End-inspiratory nonaerated lung tissue was estimated from computed tomography pressure-volume curves. Alveolar strain and opening and closing lung tissue were computed at 5 and 15 cm H(2)O PEEP. In patients with a higher percentage of potentially recruitable lung, the increase in PEEP markedly reduced opening and closing lung tissue (P < 0.001), whereas no differences were observed in patients with a lower percentage of potentially recruitable lung. In contrast, alveolar strain similarly increased in the two groups (P = 0.89). Opening and closing lung tissue was distributed mainly in the dependent and hilar lung regions, and it appeared to be an independent risk factor for death (odds ratio, 1.10 for each 10-g increase). In ARDS, especially in patients with higher lung recruitability, the beneficial impact of reducing intratidal alveolar opening and closing by increasing PEEP prevails over the effects of increasing alveolar strain.
                Bookmark

                Author and article information

                Contributors
                giacomo.bellani1@unimib.it
                Journal
                Crit Care
                Critical Care
                BioMed Central (London )
                1364-8535
                1466-609X
                16 December 2019
                16 December 2019
                2019
                : 23
                : 412
                Affiliations
                [1 ]ISNI 0000 0001 2174 1754, GRID grid.7563.7, Department of Medicine and Surgery, , University of Milan-Bicocca, ; Monza, Italy
                [2 ]ISNI 0000 0004 1756 8604, GRID grid.415025.7, Department of Emergency and Intensive Care, , San Gerardo Hospital, ; Monza, Italy
                Author information
                http://orcid.org/0000-0002-3089-205X
                Article
                2695
                10.1186/s13054-019-2695-z
                6916086
                31842915
                b4c1bb11-8a62-4799-aef7-43099298d7ab
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 September 2019
                : 6 December 2019
                Categories
                Editorial
                Custom metadata
                © The Author(s) 2019

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article