11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A cocrystal strategy with a simple preparation process is developed to prepare novel materials for near-infrared photothermal (PT) conversion and imaging. DBTTF and TCNB are selected as electron donor (D) and electron acceptor (A) to self-assemble into new cocrystals through non-covalent interactions. The strong D-A interaction leads to a narrow band gap with NIR absorption and that both the ground state and lowest-lying excited state are charge transfer states. Under the NIR laser illumination, the temperature of the cocrystal sharply increases in a short time with high PT conversion efficiency (η=18.8 %), which is due to the active non-radiative pathways and inhibition of radiative transition process, as revealed by femtosecond transient absorption spectroscopy. This is the first PT conversion cocrystal, which not only provides insights for the development of novel PT materials, but also paves the way of designing functional materials with appealing applications.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents.

          Optically active nanomaterials promise to advance a range of biophotonic techniques through nanoscale optical effects and integration of multiple imaging and therapeutic modalities. Here, we report the development of porphysomes; nanovesicles formed from self-assembled porphyrin bilayers that generated large, tunable extinction coefficients, structure-dependent fluorescence self-quenching and unique photothermal and photoacoustic properties. Porphysomes enabled the sensitive visualization of lymphatic systems using photoacoustic tomography. Near-infrared fluorescence generation could be restored on dissociation, creating opportunities for low-background fluorescence imaging. As a result of their organic nature, porphysomes were enzymatically biodegradable and induced minimal acute toxicity in mice with intravenous doses of 1,000 mg kg(-1). In a similar manner to liposomes, the large aqueous core of porphysomes could be passively or actively loaded. Following systemic administration, porphysomes accumulated in tumours of xenograft-bearing mice and laser irradiation induced photothermal tumour ablation. The optical properties and biocompatibility of porphysomes demonstrate the multimodal potential of organic nanoparticles for biophotonic imaging and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells.

            Uniform polypyrrole (PPy) nanoparticles are fabricated from a facile one-step aqueous dispersion polymerization. Owing to their high photothermal conversion efficiency and photostability compared with the well-known Au nanorods, as well as their good colloidal stability and biocompatibility, the resulting PPy nanoparticles can used as a novel promising photothermal ablation coupling agent for targeted treatment of cancer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              3D Printed Photoresponsive Devices Based on Shape Memory Composites

                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                April 03 2018
                April 03 2018
                March 08 2018
                : 57
                : 15
                : 3963-3967
                Affiliations
                [1 ]Tianjin Key Laboratory of Molecular Optoelectronic Science; Department of Chemistry; School of Science; Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
                [2 ]Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Science (ICCAS); Beijing 100190 China
                [3 ]Division of Nanophotonics; CAS Key Laboratory of Standardization and Measurement for Nanotechnology; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
                Article
                10.1002/anie.201712949
                29442430
                b4c4cc16-1822-456a-b47f-7cc670e1ee30
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article