4
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Análisis del ajuste de mascarillas autofiltrantes en combinación con las mascarillas quirúrgicas para la protección del profesional sanitario en su atención a pacientes afectos de SARS-COV-2 a partir de un estudio experimental Translated title: Analysis of the adjustment of self-filtering masks in combination with surgical masks for the protection of health professionals in the care of patients sffected by SARS-COV-2 from an experimental study

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Introducción: Un componente importante del equipo de protección individual (EPI) frente al SARS-CoV-2 son las mascarillas quirúrgicas y las mascarillas autofiltrantes (FFP). La norma europea EN 149 establece y clasifica las mascarillas autofiltrantes en tres niveles de protección dependiendo del porcentaje de fuga del total de partículas en suspensión del aire exterior hacia el aire interior FFP1, FFP2, FFP3. El objetivo de este e ensayo de laboratorio es determinar y cuantificar el nivel de ajuste de las mascarillas autofiltrantes FFP2 combinadas con las mascarillas quirúrgicas mediante series de pruebas de ajuste (fit test). Material y Métodos: Se utilizó el equipo medidor de ajuste de mascarillas FFP modelo PortaCount® Pro + 8038 compatible con las normas y metodología de la OSHA (Occupational Safety and Health Administration) de los EEUU. Se realizaron series de pruebas de ajuste sobre diferentes modelos de mascarillas autofiltrantes FFP2 con y sin mascarilla quirúrgica para diferentes situaciones de respiración del trabajador participante en este experimento. Resultados: El uso de la mascarilla quirúrgica sobre una mascarilla autofiltrante FFP2 aporta una mejora en la protección respiratoria determinante, incrementando el factor de ajuste hasta de +200 (el factor de ajuste mínimo debe ser 100). Conclusiones: Las mascarillas quirúrgicas cuando se usan conjuntamente con las mascarillas autofiltrantes, podrían mejorar significativamente el grado de ajuste de todas las mascarillas autofiltrantes proporcionando una mayor eficacia de filtración y una mayor protección al usuario frente a la exposición a aerosoles.

          Translated abstract

          Abstract Introduction: Frontline healthcare workers have a high risk of exposure to SARS-CoV-2 coronavirus, which causes COVID-19. The use of appropriate personal protective equipment (PPE) is essential to prevent this occupational disease. Surgical masks and filtering face piece (FFP) respirators are important parts of this PPE. European standard EN 149 establishes three protection levels for FFP respirators (FFP1, FFP2, FFP3), depending on the particle infiltration degree through their materials, and these, in turn, are based on their filtration effectiveness. The aim of this laboratory test is to determine and quantify the filtration and fit rate of different FFP respirators, singly and in combination with surgical masks, by performing a series of fit tests and consequently, to check whether this combination improves protection levels for healthcare workers who care for COVID-19 patients. Material and Methods: Several FFP respirators and surgical masks, singly and in combination, were fit tested with a PortaCount Pro + 8038, which fulfills OSHA standards, in a series of tests performed on healthcare workers in seven different breathing situations when taking care on COVID-19 patients, in order to determine and quantify their fit to the workers' face. Results: Wearing a surgical mask together with a highly efficient FFP respirator provided increased respiratory protection. Interestingly, one of these highly efficient FFP models, combined with a surgical mask, achieved a protection factor over 200 (whereas 100 is the minimum required protection factor). Conclusions: Surgical masks, when used together with a FFP2 respirator, could significantly improve the degree of fit of all self-filtering face piece by providing greater filtration efficiency and greater user protection from exposure to aerosols.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

          Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster

            Summary Background An ongoing outbreak of pneumonia associated with a novel coronavirus was reported in Wuhan city, Hubei province, China. Affected patients were geographically linked with a local wet market as a potential source. No data on person-to-person or nosocomial transmission have been published to date. Methods In this study, we report the epidemiological, clinical, laboratory, radiological, and microbiological findings of five patients in a family cluster who presented with unexplained pneumonia after returning to Shenzhen, Guangdong province, China, after a visit to Wuhan, and an additional family member who did not travel to Wuhan. Phylogenetic analysis of genetic sequences from these patients were done. Findings From Jan 10, 2020, we enrolled a family of six patients who travelled to Wuhan from Shenzhen between Dec 29, 2019 and Jan 4, 2020. Of six family members who travelled to Wuhan, five were identified as infected with the novel coronavirus. Additionally, one family member, who did not travel to Wuhan, became infected with the virus after several days of contact with four of the family members. None of the family members had contacts with Wuhan markets or animals, although two had visited a Wuhan hospital. Five family members (aged 36–66 years) presented with fever, upper or lower respiratory tract symptoms, or diarrhoea, or a combination of these 3–6 days after exposure. They presented to our hospital (The University of Hong Kong-Shenzhen Hospital, Shenzhen) 6–10 days after symptom onset. They and one asymptomatic child (aged 10 years) had radiological ground-glass lung opacities. Older patients (aged >60 years) had more systemic symptoms, extensive radiological ground-glass lung changes, lymphopenia, thrombocytopenia, and increased C-reactive protein and lactate dehydrogenase levels. The nasopharyngeal or throat swabs of these six patients were negative for known respiratory microbes by point-of-care multiplex RT-PCR, but five patients (four adults and the child) were RT-PCR positive for genes encoding the internal RNA-dependent RNA polymerase and surface Spike protein of this novel coronavirus, which were confirmed by Sanger sequencing. Phylogenetic analysis of these five patients' RT-PCR amplicons and two full genomes by next-generation sequencing showed that this is a novel coronavirus, which is closest to the bat severe acute respiatory syndrome (SARS)-related coronaviruses found in Chinese horseshoe bats. Interpretation Our findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions. Funding The Shaw Foundation Hong Kong, Michael Seak-Kan Tong, Respiratory Viral Research Foundation Limited, Hui Ming, Hui Hoy and Chow Sin Lan Charity Fund Limited, Marina Man-Wai Lee, the Hong Kong Hainan Commercial Association South China Microbiology Research Fund, Sanming Project of Medicine (Shenzhen), and High Level-Hospital Program (Guangdong Health Commission).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Virological assessment of hospitalized patients with COVID-2019

              Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in late 20191,2. Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses3. This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung2,4; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 20035. However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre- or oligosymptomatic transmission6-8. There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the upper respiratory tract. Pharyngeal virus shedding was very high during the first week of symptoms, with a peak at 7.11 × 108 RNA copies per throat swab on day 4. Infectious virus was readily isolated from samples derived from the throat or lung, but not from stool samples-in spite of high concentrations of virus RNA. Blood and urine samples never yielded virus. Active replication in the throat was confirmed by the presence of viral replicative RNA intermediates in the throat samples. We consistently detected sequence-distinct virus populations in throat and lung samples from one patient, proving independent replication. The shedding of viral RNA from sputum outlasted the end of symptoms. Seroconversion occurred after 7 days in 50% of patients (and by day 14 in all patients), but was not followed by a rapid decline in viral load. COVID-19 can present as a mild illness of the upper respiratory tract. The confirmation of active virus replication in the upper respiratory tract has implications for the containment of COVID-19.
                Bookmark

                Author and article information

                Journal
                aprl
                Archivos de Prevención de Riesgos Laborales
                Arch Prev Riesgos Labor
                Societat Catalana de Salut Laboral y Asociación de Medicina del Trabajo de la Comunidad Valenciana (Barcelona, Barcelona, Spain )
                1578-2549
                June 2021
                : 24
                : 2
                : 154-170
                Affiliations
                [1] St. Cugat del Vallés Barcelona orgnameAsepeyo orgdiv1Laboratorio de Higiene Industrial. Hospital -Centro de Prevención y Rehabilitación orgdiv2Centro de Innovación e Investigación de la Dirección de Prevención (DPV) España
                [5] Mataró Cataluña orgnameUniversitat Pompeu Fabra orgdiv1Escuela Superior de Ciencias de la Salud orgdiv2Departamento de Fisioterapia Spain
                [3] Manresa Cataluña orgnameUniversitat de VIC orgdiv1Facultad de Ciencias de la Salud UManresa orgdiv2Grupo de Investigación en Podología, Biomecánica, Fisioterapia y Ejercicio Terapéutico (GRIBIPOFET) Spain
                [2] Barcelona Cataluña orgnameUniversitat Internacional de Catalunya orgdiv1Departamento de Fisioterapia, Facultad de Medicina y Ciencias de la Salud Spain
                [4] St.Cugat del Vallés Barcelona orgnameHospital -Centro de Prevención y Rehabilitación Asepeyo orgdiv1Departamento de Rehabilitación España
                Article
                S1578-25492021000200154 S1578-2549(21)02400200154
                10.12961/aprl.2021.24.02.06
                b4ccc829-7306-4596-a690-39f5d756d208

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 10 February 2021
                : 20 November 2020
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 31, Pages: 17
                Product

                SciELO Spain

                Categories
                Originales

                SARS-CoV-2,COVID-19,mascarilla quirúrgica,enfermedades infecciosas,mascarilla autofiltrante,FFP2, factor de ajuste,surgical masks,infectious disease,Respirator,filtering face piece (FFP);fit test,protection factor

                Comments

                Comment on this article