26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endocrine rhythms in the brown bear ( Ursus arctos): Evidence supporting selection for decreased pineal gland size

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many temperate zone animals adapt to seasonal changes by altering their physiology. This is mediated in large part by endocrine signals that encode day length and regulate energy balance and metabolism. The objectives of this study were to determine if the daily patterns of two important hormones, melatonin and cortisol, varied with day length in captive brown bears (Ursus arctos) under anesthetized and nonanesthetized conditions during the active (March–October) and hibernation periods. Melatonin concentrations varied with time of day and season in nonanesthetized female bears despite exceedingly low nocturnal concentrations (1–4 pg/mL) in the active season. In contrast, melatonin concentrations during hibernation were 7.5-fold greater than those during the summer in anesthetized male bears. Functional assessment of the pineal gland revealed a slight but significant reduction in melatonin following nocturnal light application during hibernation, but no response to beta-adrenergic stimulation was detected in either season. Examination of pineal size in two bear species bears combined with a phylogenetically corrected analysis of pineal glands in 47 other species revealed a strong relationship to brain size. However, pineal gland size of both bear species deviated significantly from the expected pattern. Robust daily plasma cortisol rhythms were observed during the active season but not during hibernation. Cortisol was potently suppressed following injection with a synthetic glucocorticoid. The results suggest that melatonin and cortisol both retain their ability to reflect seasonal changes in day length in brown bears. The exceptionally small pineal gland in bears may be the result of direct or indirect selection.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: not found
          • Book: not found

          R: A Language and Environment for Statistical Computing.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The delayed rise of present-day mammals.

            Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extant Mammalia to bring a new perspective to this question. Our analyses of how extant lineages accumulated through time show that net per-lineage diversification rates barely changed across the Cretaceous/Tertiary boundary. Instead, these rates spiked significantly with the origins of the currently recognized placental superorders and orders approximately 93 million years ago, before falling and remaining low until accelerating again throughout the Eocene and Oligocene epochs. Our results show that the phylogenetic 'fuses' leading to the explosion of extant placental orders are not only very much longer than suspected previously, but also challenge the hypothesis that the end-Cretaceous mass extinction event had a major, direct influence on the diversification of today's mammals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN.

              Human vision starts with the activation of rod photoreceptors in dim light and short (S)-, medium (M)-, and long (L)- wavelength-sensitive cone photoreceptors in daylight. Recently a parallel, non-rod, non-cone photoreceptive pathway, arising from a population of retinal ganglion cells, was discovered in nocturnal rodents. These ganglion cells express the putative photopigment melanopsin and by signalling gross changes in light intensity serve the subconscious, 'non-image-forming' functions of circadian photoentrainment and pupil constriction. Here we show an anatomically distinct population of 'giant', melanopsin-expressing ganglion cells in the primate retina that, in addition to being intrinsically photosensitive, are strongly activated by rods and cones, and display a rare, S-Off, (L + M)-On type of colour-opponent receptive field. The intrinsic, rod and (L + M) cone-derived light responses combine in these giant cells to signal irradiance over the full dynamic range of human vision. In accordance with cone-based colour opponency, the giant cells project to the lateral geniculate nucleus, the thalamic relay to primary visual cortex. Thus, in the diurnal trichromatic primate, 'non-image-forming' and conventional 'image-forming' retinal pathways are merged, and the melanopsin-based signal might contribute to conscious visual perception.
                Bookmark

                Author and article information

                Journal
                Physiol Rep
                Physiol Rep
                phy2
                Physiological Reports
                Blackwell Publishing Ltd
                2051-817X
                2051-817X
                August 2013
                22 August 2013
                : 1
                : 3
                : e00048
                Affiliations
                [1 ]Departments of Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University Pullman, Washington, 99164
                [2 ]Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University Pullman, Washington, 99164
                [3 ]School of the Environment, Washington State University Pullman, Washington, 99164
                [4 ]School of Biological Sciences, Washington State University Pullman, Washington, 99164
                [5 ]Department of Biological Sciences, University of Idaho Moscow, Idaho, 83844
                Author notes
                Heiko T. Jansen, Department of IPN, 205 VBRB, Washington State University, Pullman, WA 99164. Tel: 509-335-7056 Fax: 509-335-4650E-mail: heiko@ 123456vetmed.wsu.edu

                Funding Information Funding was provided by the Interagency Grizzly Bear Committee and the following Washington State University endowments: Raili Korkka Brown Bear Fund, Bear Research and Conservation Fund, and Nutritional Ecology Fund.

                Article
                10.1002/phy2.48
                3835004
                24303132
                b4d7bfa4-3a30-420a-b4c7-85f7de392a48
                © 2013 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society

                Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.

                History
                : 14 June 2013
                : 09 July 2013
                : 10 July 2013
                Categories
                Original Research

                brown bear, cortisol,melatonin,pineal, seasonal
                brown bear, cortisol, melatonin, pineal, seasonal

                Comments

                Comment on this article