57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A role for nematocytes in the cellular immune response of the Drosophilid Zaprionus indianus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          The melanotic encapsulation response mounted by Drosophila melanogaster against macroparasites, which is based on haemocyte binding to foreign objects, is poorly characterized relative to its humoral immune response against microbes, and appears to be variable across insect lineages. The genus Zaprionus is a diverse clade of flies embedded within the genus Drosophila. Here we characterize the immune response of Zaprionus indianus against endoparasitoid wasp eggs, which elicit the melanotic encapsulation response in D. melanogaster. We find that Z. indianus is highly resistant to diverse wasp species. Although Z. indianus mounts the canonical melanotic encapsulation response against some wasps, it can also potentially fight off wasp infection using two other mechanisms: encapsulation without melanization and a non-cellular form of wasp killing. Zaprionus indianus produces a large number of haemocytes including nematocytes, which are large fusiform haemocytes absent in D. melanogaster, but which we found in several other species in the subgenus Drosophila. Several lines of evidence suggest these nematocytes are involved in anti-wasp immunity in Z. indianus and in particular in the encapsulation of wasp eggs. Altogether, our data show that the canonical anti-wasp immune response and haemocyte make-up of the model organism D. melanogaster vary across the genus Drosophila.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Postembryonic hematopoiesis in Drosophila.

          We have investigated the blood cell types present in Drosophila at postembryonic stages and have analysed their modifications during development and under immune conditions. The anterior lobes of the larval hematopoietic organ or lymph gland contain numerous active secretory cells, plasmatocytes, few crystal cells, and a number of undifferentiated prohemocytes. The posterior lobes contain essentially prohemocytes. The blood cell population in larval hemolymph differs and consists mainly of plasmatocytes which are phagocytes, and of a low percentage of crystal cells which reportedly play a role in humoral melanisation. We show that the cells in the lymph gland can differentiate into a given blood cell lineage when solicited. Under normal nonimmune conditions, we observe a massive differentiation into active macrophages at the onset of metamorphosis in all lobes. Simultaneously, circulating plasmatocytes modify their adhesion and phagocytic properties to become pupal macrophages. All phagocytic cells participate in metamorphosis by ingesting doomed larval tissues. The most dramatic effect on larval hematopoiesis was observed following infestation by a parasitoid wasp. Cells within all lymph gland lobes, including prohemocytes from posterior lobes, massively differentiate into a new cell type specifically devoted to encapsulation, the lamellocyte. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster.

            The blood cells, or hemocytes, in Drosophila participate in the immune response through the production of antimicrobial peptides, the phagocytosis of bacteria, and the encapsulation of larger foreign particles such as parasitic eggs; these immune reactions are mediated by phylogenetically conserved mechanisms. The encapsulation reaction is analogous to the formation of granuloma in vertebrates, and is mediated by large specialized cells, the lamellocytes. The origin of the lamellocytes has not been formally established, although it has been suggested that they are derived from the lymph gland, which is generally considered to be the main hematopoietic organ in the Drosophila larva. However, it was recently observed that a subepidermal population of sessile blood cells is released into the circulation in response to a parasitoid wasp infection. We set out to analyze this phenomenon systematically. As a result, we define the sessile hemocytes as a novel hematopoietic compartment, and the main source of lamellocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              High Hemocyte Load Is Associated with Increased Resistance against Parasitoids in Drosophila suzukii, a Relative of D. melanogaster

              Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol.
                Bookmark

                Author and article information

                Journal
                0401121
                6357
                Parasitology
                Parasitology
                Parasitology
                0031-1820
                1469-8161
                18 June 2015
                28 January 2014
                April 2014
                24 June 2015
                : 141
                : 5
                : 697-715
                Affiliations
                Biology Department, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
                Author notes
                [* ]Corresponding author: Biology Department, Emory University, 1510 Clifton Rd NE, RRC room 1017, Atlanta, GA 30322, USA. tschlen@ 123456emory.edu
                Article
                NIHMS701025
                10.1017/S0031182013001431
                4479215
                24476764
                b4de4654-dfdd-406d-8021-9448035869b6
                © Cambridge University Press 2014.

                The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence < http://creativecommons.org/licenses/by/3.0/>.

                History
                Categories
                Article

                Parasitology
                zaprionus,encapsulation,haemocyte,nematocyte,endoparasitoid wasp
                Parasitology
                zaprionus, encapsulation, haemocyte, nematocyte, endoparasitoid wasp

                Comments

                Comment on this article