23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Current Management of Pheochromocytoma/Paraganglioma: A Guide for the Practicing Clinician in the Era of Precision Medicine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pheochromocytomas and paragangliomas (PCC/PGLs) are rare, mostly catecholamine-producing neuroendocrine tumors of the adrenal gland (PCCs) or the extra-adrenal paraganglia (PGL). They can be separated into three different molecular clusters depending on their underlying gene mutations in any of the at least 20 known susceptibility genes: The pseudohypoxia-associated cluster 1, the kinase signaling-associated cluster 2, and the Wnt signaling-associated cluster 3. In addition to tumor size, location (adrenal vs. extra-adrenal), multiplicity, age of first diagnosis, and presence of metastatic disease (including tumor burden), other decisive factors for best clinical management of PCC/PGL include the underlying germline mutation. The above factors can impact the choice of different biomarkers and imaging modalities for PCC/PGL diagnosis, as well as screening for other neoplasms, staging, follow-up, and therapy options. This review provides a guide for practicing clinicians summarizing current management of PCC/PGL according to tumor size, location, age of first diagnosis, presence of metastases, and especially underlying mutations in the era of precision medicine.

          Related collections

          Most cited references150

          • Record: found
          • Abstract: found
          • Article: not found

          Lanreotide in metastatic enteropancreatic neuroendocrine tumors.

          Somatostatin analogues are commonly used to treat symptoms associated with hormone hypersecretion in neuroendocrine tumors; however, data on their antitumor effects are limited. We conducted a randomized, double-blind, placebo-controlled, multinational study of the somatostatin analogue lanreotide in patients with advanced, well-differentiated or moderately differentiated, nonfunctioning, somatostatin receptor-positive neuroendocrine tumors of grade 1 or 2 (a tumor proliferation index [on staining for the Ki-67 antigen] of <10%) and documented disease-progression status. The tumors originated in the pancreas, midgut, or hindgut or were of unknown origin. Patients were randomly assigned to receive an extended-release aqueous-gel formulation of lanreotide (Autogel [known in the United States as Depot], Ipsen) at a dose of 120 mg (101 patients) or placebo (103 patients) once every 28 days for 96 weeks. The primary end point was progression-free survival, defined as the time to disease progression (according to the Response Evaluation Criteria in Solid Tumors, version 1.0) or death. Secondary end points included overall survival, quality of life (assessed with the European Organization for Research and Treatment of Cancer questionnaires QLQ-C30 and QLQ-GI.NET21), and safety. Most patients (96%) had no tumor progression in the 3 to 6 months before randomization, and 33% had hepatic tumor volumes greater than 25%. Lanreotide, as compared with placebo, was associated with significantly prolonged progression-free survival (median not reached vs. median of 18.0 months, P<0.001 by the stratified log-rank test; hazard ratio for progression or death, 0.47; 95% confidence interval [CI], 0.30 to 0.73). The estimated rates of progression-free survival at 24 months were 65.1% (95% CI, 54.0 to 74.1) in the lanreotide group and 33.0% (95% CI, 23.0 to 43.3) in the placebo group. The therapeutic effect in predefined subgroups was generally consistent with that in the overall population, with the exception of small subgroups in which confidence intervals were wide. There were no significant between-group differences in quality of life or overall survival. The most common treatment-related adverse event was diarrhea (in 26% of the patients in the lanreotide group and 9% of those in the placebo group). Lanreotide was associated with significantly prolonged progression-free survival among patients with metastatic enteropancreatic neuroendocrine tumors of grade 1 or 2 (Ki-67 <10%). (Funded by Ipsen; CLARINET ClinicalTrials.gov number, NCT00353496; EudraCT 2005-004904-35.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma.

            We report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidelines for diagnosis and therapy of MEN type 1 and type 2.

              This is a consensus statement from an international group, mostly of clinical endocrinologists. MEN1 and MEN2 are hereditary cancer syndromes. The commonest tumors secrete PTH or gastrin in MEN1, and calcitonin or catecholamines in MEN2. Management strategies improved after the discoveries of their genes. MEN1 has no clear syndromic variants. Tumor monitoring in MEN1 carriers includes biochemical tests yearly and imaging tests less often. Neck surgery includes subtotal or total parathyroidectomy, parathyroid cryopreservation, and thymectomy. Proton pump inhibitors or somatostatin analogs are the main management for oversecretion of entero-pancreatic hormones, except insulin. The roles for surgery of most entero-pancreatic tumors present several controversies: exclusion of most operations on gastrinomas and indications for surgery on other tumors. Each MEN1 family probably has an inactivating MEN1 germline mutation. Testing for a germline MEN1 mutation gives useful information, but rarely mandates an intervention. The most distinctive MEN2 variants are MEN2A, MEN2B, and familial medullary thyroid cancer (MTC). They vary in aggressiveness of MTC and spectrum of disturbed organs. Mortality in MEN2 is greater from MTC than from pheochromocytoma. Thyroidectomy, during childhood if possible, is the goal in all MEN2 carriers to prevent or cure MTC. Each MEN2 index case probably has an activating germline RET mutation. RET testing has replaced calcitonin testing to diagnose the MEN2 carrier state. The specific RET codon mutation correlates with the MEN2 syndromic variant, the age of onset of MTC, and the aggressiveness of MTC; consequently, that mutation should guide major management decisions, such as whether and when to perform thyroidectomy.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                08 October 2019
                October 2019
                : 11
                : 10
                : 1505
                Affiliations
                [1 ]Department of Medicine IV, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 München, Germany
                [2 ]Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; m.ullrich@ 123456hzdr.de (M.U.); j.pietzsch@ 123456hzdr.de (J.P.)
                [3 ]Department of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 9, 01062 Dresden, Germany
                [4 ]Department of Medicine III, University Hospital Carl Gustav Carus Dresden, Fetscherstraße 74, 01307 Dresden, Germany; Christian.Ziegler@ 123456uniklinikum-dresden.de (C.G.Z.); Graeme.Eisenhofer@ 123456uniklinikum-dresden.de (G.E.)
                [5 ]Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at Technische Universität Dresden, 01307 Dresden, Germany
                [6 ]Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford Ox3 7LJ, UK; ashley.grossman@ 123456ocdem.ox.ac.uk
                [7 ]Department of Gastroenterology, Royal Free Hospital ENETS Centre of Excellence, London NW3 2QG, UK
                [8 ] Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA; karel@ 123456mail.nih.gov
                Author notes
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0001-6104-6676
                https://orcid.org/0000-0002-1610-1493
                https://orcid.org/0000-0003-1176-6186
                Article
                cancers-11-01505
                10.3390/cancers11101505
                6827093
                31597347
                b4e3c249-6ec0-4feb-b416-27f50749f8e1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 August 2019
                : 24 September 2019
                Categories
                Review

                pheochromocytoma,paraganglioma,guideline,genetics,diagnosis,biomarkers,imaging,follow-up,therapy,precision medicine

                Comments

                Comment on this article