3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HPLC-UV and GC-MS Methods for Determination of Chlorambucil and Valproic Acid in Plasma for Further Exploring a New Combined Therapy of Chronic Lymphocytic Leukemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High performance liquid chromatography with ultra-violet detection (HPLC-UV) and gas chromatography–mass spectrometry (GC-MS) methods were developed and validated for the determination of chlorambucil (CLB) and valproic acid (VPA) in plasma, as a part of experiments on their anticancer activity in chronic lymphocytic leukemia (CLL). CLB was extracted from 250 µL of plasma with methanol, using simple protein precipitation and filtration. Chromatography was carried out on a LiChrospher 100 RP-18 end-capped column using a mobile phase consisting of acetonitrile, water and formic acid, and detection at 258 nm. The lowest limit of detection LLOQ was found to be 0.075 μg/mL, showing sufficient sensitivity in relation to therapeutic concentrations of CLB in plasma. The accuracy was from 94.13% to 101.12%, while the intra- and inter-batch precision was ≤9.46%. For quantitation of VPA, a sensitive GC-MS method was developed involving simple pre-column esterification with methanol and extraction with hexane. Chromatography was achieved on an HP-5MSUI column and monitored by MS with an electron impact ionization and selective ion monitoring mode. Using 250 µL of plasma, the LLOQ was found to be 0.075 μg/mL. The accuracy was from 94.96% to 109.12%, while the intra- and inter-batch precision was ≤6.69%. Thus, both methods fulfilled the requirements of FDA guidelines for the determination of drugs in biological materials.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Histone Deacetylase Inhibitors in Clinical Studies as Templates for New Anticancer Agents

          Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial

            Altered histone deacetylase (HDAC) activity has been identified in several types of cancer. This study was designed to determine the safety and maximum tolerated dose (MTD) of valproic acid (VPA) as an HDAC inhibitor in cancer patients. Twenty-six pre-treated patients with progressing solid tumours were enrolled in dose-escalating three-patient cohorts, starting at a dose of VPA 30 mg kg−1 day−1. VPA was administered as an 1-h infusion daily for 5 consecutive days in a 21-day cycle. Neurocognitive impairment dominated the toxicity profile, with grade 3 or 4 neurological side effects occurring in 8 out of 26 patients. No grade 3 or 4 haematological toxicity was observed. The MTD of infusional VPA was 60 mg kg−1 day−1. Biomonitoring of peripheral blood lymphocytes demonstrated the induction of histone hyperacetylation in the majority of patients and downmodulation of HDAC2. Pharmacokinetic studies showed increased mean and maximum serum VPA concentrations >120 and >250 mg l−1, respectively, in the 90 and 120 mg kg−1 cohorts, correlating well with the incidence of dose-limiting toxicity (DLT). Neurotoxicity was the main DLT of infusional VPA, doses up to 60 mg kg−1 day−1 for 5 consecutive days are well tolerated and show detectable biological activity. Further investigations are warranted to evaluate the effectivity of VPA alone and in combination with other cytotoxic drugs.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Guidance for Industry-Bioanalytical Method Validation

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                13 May 2021
                May 2021
                : 26
                : 10
                : 2903
                Affiliations
                [1 ]Department of Medicinal Chemistry, Medical University of Lublin, 20-090 Lublin, Poland; katarzyna.lipska@ 123456gmail.com (K.L.); rafal.pietras@ 123456umlub.pl (R.P.)
                [2 ]Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, 20-080 Lublin, Poland; a.filip@ 123456umlub.pl
                Author notes
                [* ]Correspondence: anna.gumieniczek@ 123456umlub.pl ; Tel.: +48-81448-7382
                Author information
                https://orcid.org/0000-0002-2503-5272
                https://orcid.org/0000-0003-4566-6941
                https://orcid.org/0000-0001-7591-5887
                Article
                molecules-26-02903
                10.3390/molecules26102903
                8153269
                34068372
                b4e8a648-bd3a-4c7f-b7d2-8a7c74c41c0e
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 08 April 2021
                : 10 May 2021
                Categories
                Article

                chlorambucil and valproic acid,hplc-uv and gc-ms methods,optimization and validation,determination in plasma,combined anticancer therapy

                Comments

                Comment on this article