Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training

Read this article at

ScienceOpenPublisherPMC
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The purpose of this study was to investigate associations between acute exercise-induced hormone responses and adaptations to high intensity resistance training in a large cohort (n = 56) of young men. Acute post-exercise serum growth hormone (GH), free testosterone (fT), insulin-like growth factor (IGF-1) and cortisol responses were determined following an acute intense leg resistance exercise routine at the midpoint of a 12-week resistance exercise training study. Acute hormonal responses were correlated with gains in lean body mass (LBM), muscle fibre cross-sectional area (CSA) and leg press strength. There were no significant correlations between the exercise-induced elevations (area under the curve—AUC) of GH, fT and IGF-1 and gains in LBM or leg press strength. Significant correlations were found for cortisol, usually assumed to be a hormone indicative of catabolic drive, AUC with change in LBM (r = 0.29, P < 0.05) and type II fibre CSA (r = 0.35, P < 0.01) as well as GH AUC and gain in fibre area (type I: r = 0.36, P = 0.006; type II: r = 0.28, P = 0.04, but not lean mass). No correlations with strength were observed. We report that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.Electronic supplementary materialThe online version of this article (doi:10.1007/s00421-011-2246-z) contains supplementary material, which is available to authorized users.

      Related collections

      Most cited references 56

      • Record: found
      • Abstract: not found
      • Article: not found

      A farewell to Bonferroni: the problems of low statistical power and publication bias

       S Nakagawa (2004)
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men.

        This study was designed to compare the acute response of mixed muscle protein synthesis (MPS) to rapidly (i.e., whey hydrolysate and soy) and slowly (i.e., micellar casein) digested proteins both at rest and after resistance exercise. Three groups of healthy young men (n = 6 per group) performed a bout of unilateral leg resistance exercise followed by the consumption of a drink containing an equivalent content of essential amino acids (10 g) as either whey hydrolysate, micellar casein, or soy protein isolate. Mixed MPS was determined by a primed constant infusion of l-[ring-(13)C(6)]phenylalanine. Ingestion of whey protein resulted in a larger increase in blood essential amino acid, branched-chain amino acid, and leucine concentrations than either casein or soy (P soy > casein); MPS following whey consumption was approximately 122% greater than casein (P < 0.01) and 31% greater than soy (P < 0.05). MPS was also greater with soy consumption at rest (64%) and following resistance exercise (69%) compared with casein (both P < 0.01). We conclude that the feeding-induced simulation of MPS in young men is greater after whey hydrolysate or soy protein consumption than casein both at rest and after resistance exercise; moreover, despite both being fast proteins, whey hydrolysate stimulated MPS to a greater degree than soy after resistance exercise. These differences may be related to how quickly the proteins are digested (i.e., fast vs. slow) or possibly to small differences in leucine content of each protein.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men.

          We investigated how myofibrillar protein synthesis (MPS) and muscle anabolic signalling were affected by resistance exercise at 20-90% of 1 repetition maximum (1 RM) in two groups (25 each) of post-absorptive, healthy, young (24 +/- 6 years) and old (70 +/- 5 years) men with identical body mass indices (24 +/- 2 kg m(-2)). We hypothesized that, in response to exercise, anabolic signalling molecule phosphorylation and MPS would be modified in a dose-dependant fashion, but to a lesser extent in older men. Vastus lateralis muscle was sampled before, immediately after, and 1, 2 and 4 h post-exercise. MPS was measured by incorporation of [1,2-(13)C] leucine (gas chromatography-combustion-mass spectrometry using plasma [1,2-(13)C]alpha-ketoisocaparoate as surrogate precursor); the phosphorylation of p70 ribosomal S6 kinase (p70s6K) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) was measured using Western analysis with anti-phosphoantibodies. In each group, there was a sigmoidal dose-response relationship between MPS at 1-2 h post-exercise and exercise intensity, which was blunted (P < 0.05) in the older men. At all intensities, MPS fell in both groups to near-basal values by 2-4 h post-exercise. The phosphorylation of p70s6K and 4EBP1 at 60-90% 1 RM was blunted in older men. At 1 h post-exercise at 60-90% 1 RM, p70s6K phosphorylation predicted the rate of MPS at 1-2 h post-exercise in the young but not in the old. The results suggest that in the post-absorptive state: (i) MPS is dose dependant on intensity rising to a plateau at 60-90% 1 RM; (ii) older men show anabolic resistance of signalling and MPS to resistance exercise.
            Bookmark

            Author and article information

            Affiliations
            Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1 Canada
            Author notes

            Communicated by Fausto Baldissera.

            Contributors
            +1-905-5259140 , +1-905-5236011 , phillis@mcmaster.ca
            Journal
            Eur J Appl Physiol
            Eur. J. Appl. Physiol
            European Journal of Applied Physiology
            Springer-Verlag (Berlin/Heidelberg )
            1439-6319
            1439-6327
            22 November 2011
            22 November 2011
            July 2012
            : 112
            : 7
            : 2693-2702
            3371329
            22105707
            2246
            10.1007/s00421-011-2246-z
            © The Author(s) 2011
            Categories
            Original Article
            Custom metadata
            © Springer-Verlag 2012

            Comments

            Comment on this article