21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LncRNA PVT1 Suppresses the Progression of Renal Fibrosis via Inactivation of TGF-β Signaling Pathway

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Renal fibrosis is a frequent pathway leading to end-stage kidney dysfunction. In addition, renal fibrosis is the ultimate manifestation of chronic kidney diseases (CKD). Long noncoding RNAs (lncRNAs) are known to be involved in occurrence of renal fibrosis, and lncRNA plasmacytoma variant translocation 1 (PVT1) has been reported to act as a key biomarker in renal diseases. However, the role of PVT1 in renal fibrosis remains unclear.

          Materials and Methods

          HK-2 cells were treated with TGF-β1 to mimic renal fibrosis in vitro. Gene and protein expressions in HK-2 cells were measured by qRT-PCR and Western-blot, respectively. ELISA was used to test the level of creatinine (CR) and blood urea nitrogen (BUN) in serum of mice. Additionally, unilateral ureteral obstruction (UUO)-induced renal fibrosis mice model was established to investigate the effect of PVT1 on renal fibrosis in vivo.

          Results

          PVT1 was upregulated in TGF-β1-treated HK-2 cells. In addition, TGF-β1-induced upregulation of α-SMA and fibronectin in HK-2 cells was significantly reversed by PVT1 knockdown. Meanwhile, PVT1 bound to miR-181a-5p in HK-2 cells. Moreover, miR-181a-5p directly targeted TGF-βR1. Furthermore, miR-181a-5p antagonist could significantly reverse the anti-fibrotic effect of PVT1 knockdown. Besides, knockdown of PVT1 notably attenuated the symptom of renal fibrosis in vivo.

          Conclusion

          Knockdown of PVT1 significantly inhibited the progression of renal fibrosis in vitro and in vivo. Thus, PVT1 may serve as a potential target for the treatment of renal fibrosis.

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Clinical Characteristics of and Risk Factors for Chronic Kidney Disease Among Adults and Children

          Key Points Question What are the clinical characteristics of and major risk factors for chronic kidney disease among patients in 2 large US health care systems? Findings In this cohort study of the Center for Kidney Research, Education, and Hope (CURE-CKD) registry, more than 2.6 million adults and children had chronic kidney disease or were at risk. Albuminuria or proteinuria was tested in approximately one-eighth of adults with chronic kidney disease, renin-angiotensin system inhibitors were prescribed to one-fifth, and nonsteroidal anti-inflammatory agents or proton pump inhibitors were prescribed to more than one-third. Meaning Despite common occurrence of chronic kidney disease, rates of identification and use of kidney protective agents were low, while use of potential nephrotoxins was widespread.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            m 6 A-induced lncRNA MALAT1 aggravates renal fibrogenesis in obstructive nephropathy through the miR-145/FAK pathway

            Renal fibrosis is a key factor in chronic kidney disease (CKD). Long non-coding RNAs (lncRNAs) play important roles in the physiological and pathological progression of human diseases. However, the roles and underlying mechanisms of lncRNAs in renal fibrosis still need to be discovered. In this study, we first displayed the increased lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in renal fibrosis in patients with obstructive nephropathy (ON). Then we found that transforming growth factor beta 1 (TGF-β1) induced epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) protein deposition, which promoted the viability, proliferation and migration of human renal proximal tubular epithelial (HK2) cells. Next, MALAT1/miR-145/focal adhesion kinase (FAK) pathway was confirmed to play an importment role in TGF-β1-induced renal fibrosis. In addition, the MALAT1/miR-145/FAK pathway was involved in the effect of dihydroartemisinin (DHA) on TGF-β1-induced renal fibrosis in vitro and in vivo. Furthermore, m6A methyltransferase methyltransferase-like 3 (METTL3) was shown to be the main methyltransferase of m6A modification on MALAT1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long non-coding RNA PVT1 promote LPS-induced septic acute kidney injury by regulating TNFα and JNK/NF-κB pathways in HK-2 cells.

              This study aimed to investigate the effect and underlying mechanism of long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in lipopolysaccharide (LPS)-induced inflammation injury in HK-2 cells. We established LPS-induced septic acute kidney injury (AKI) model in HK-2 cells. LPS-induced HK-2 cells were transfected with pc-PVT1, pc-NC, si-PVT1 or si-NC. Cell viability and apoptosis rate were detected by MTT assay and Annexin V-FITC/PI Apoptosis Detection kit, respectively. The relationships of PVT1 and inflammatory factors were evaluated by RNA Immunoprecipitation (RIP) assay. The levels of inflammatory factors, apoptosis-related proteins and the expressions of proteins related to c-Jun N-terminal kinase (JNK) and nuclear factor-κB (NF-κB) signaling pathway were detected by ELISA or Western blotting. Compared with cells with pc-NC, cell viability was remarkably decreased and cell apoptosis rate was increased in LPS-induced cells with pc-PVT1 (p<0.05). The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β were significantly increased in LPS-induced cells with pc-PVT1 compared with cells with pc-NC (p<0.05). All these changes were reversed in LPS-induced cells with si-PVT1 and si-NC (p<0.05). RTP assay revealed that PVT1 could bind to TNF-α. Furthermore, down-regulated PVT1 remarkably reduced the expressions of p-JNK and p-c-Jun, p-IκBα and p-p65 (p<0.05); while increased expressions of these proteins and inflammatory factors induced by up-regulated PVT1 were reversed by JNK or NF-κB inhibitors. PVT1 may promote inflammatory response by binding to TNF-α and inhibiting JNK/NF-κB signaling pathway in LPS-induced septic AKI cells.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                26 August 2020
                2020
                : 14
                : 3547-3557
                Affiliations
                [1 ]Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan 450000, People’s Republic of China
                [2 ]Department of Cancer Immunotherapy, The Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou, Henan 450000, People’s Republic of China
                Author notes
                Correspondence: Lu Cao Email caolu_mailtowe@163.com
                Article
                245244
                10.2147/DDDT.S245244
                7457787
                b4f354ac-bd18-4ea5-bc11-1e54ad414878
                © 2020 Cao et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 08 January 2020
                : 31 July 2020
                Page count
                Figures: 6, References: 48, Pages: 11
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                pvt1,renal fibrosis,mir-181a-5p,tgf-βr1
                Pharmacology & Pharmaceutical medicine
                pvt1, renal fibrosis, mir-181a-5p, tgf-βr1

                Comments

                Comment on this article