10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Robust topologically protected transport in photonic crystals at telecommunication wavelengths

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photonic topological insulators offer the possibility to eliminate backscattering losses and improve the efficiency of optical communication systems. Despite considerable efforts, a direct experimental demonstration of theoretically predicted robust, lossless energy transport in topological insulators operating at near-infrared frequencies is still missing. Here, we combine the properties of a planar silicon photonic crystal and the concept of topological protection to design, fabricate and characterize an optical topological insulator that exhibits the valley Hall effect. We show that the transmittances are the same for light propagation along a straight topological interface and one with four sharp turns. This result quantitatively demonstrates the suppression of backscattering due to the non-trivial topology of the structure. The photonic-crystal-based approach offers significant advantages compared with other realizations of photonic topological insulators, such as lower propagation losses, the presence of a band gap for light propagating in the crystal-slab plane, a larger operating bandwidth, a much smaller footprint, compatibility with complementary metal-oxide-semiconductor fabrication technology, and the fact that it allows for operation at telecommunications wavelengths.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Quantum Spin Hall Effect in Graphene

          We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the quantized transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are non chiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder and symmetry breaking fields are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The birth of topological insulators.

            Joel Moore (2010)
            Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              \(Z_2\) Topological Order and the Quantum Spin Hall Effect

              The quantum spin Hall (QSH) phase is a time reversal invariant electronic state with a bulk electronic band gap that supports the transport of charge and spin in gapless edge states. We show that this phase is associated with a novel \(Z_2\) topological invariant, which distinguishes it from an ordinary insulator. The \(Z_2\) classification, which is defined for time reversal invariant Hamiltonians, is analogous to the Chern number classification of the quantum Hall effect. We establish the \(Z_2\) order of the QSH phase in the two band model of graphene and propose a generalization of the formalism applicable to multi band and interacting systems.
                Bookmark

                Author and article information

                Journal
                Nature Nanotechnology
                Nature Nanotech
                Springer Nature America, Inc
                1748-3387
                1748-3395
                November 12 2018
                Article
                10.1038/s41565-018-0297-6
                30420760
                b502868f-c085-494f-802b-151908e1a85b
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article