64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of Heterochromatin Assembly on Unpaired Chromosomes during Caenorhabditis elegans Meiosis by Components of a Small RNA-Mediated Pathway

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many organisms have a mechanism for down regulating the expression of non-synapsed chromosomes and chromosomal regions during meiosis. This phenomenon is thought to function in genome defense. During early meiosis in Caenorhabditis elegans, unpaired chromosomes (e.g., the male X chromosome) become enriched for a modification associated with heterochromatin and transcriptional repression, dimethylation of histone H3 on lysine 9 (H3K9me2). This enrichment requires activity of the cellular RNA-directed RNA polymerase, EGO-1. Here we use genetic mutation, RNA interference, immunofluorescence microscopy, fluorescence in situ hybridization, and molecular cloning methods to identify and analyze three additional regulators of meiotic H3K9me2 distribution: CSR-1 (a Piwi/PAZ/Argonaute protein), EKL-1 (a Tudor domain protein), and DRH-3 (a DEAH/D-box helicase). In csr-1, ekl-1, and drh-3 mutant males, we observed a reduction in H3K9me2 accumulation on the unpaired X chromosome and an increase in H3K9me2 accumulation on paired autosomes relative to controls. We observed a similar shift in H3K9me2 pattern in hermaphrodites that carry unpaired chromosomes. Based on several assays, we conclude that ectopic H3K9me2 accumulates on paired and synapsed chromosomes in these mutants. We propose alternative models for how a small RNA-mediated pathway may regulate H3K9me2 accumulation during meiosis. We also describe the germline phenotypes of csr-1, ekl-1, and drh-3 mutants. Our genetic data suggest that these factors, together with EGO-1, participate in a regulatory network to promote diverse aspects of development.

          Author Summary

          DNA within a cell's nucleus is packaged together with proteins into a higher order structure called chromatin. In its simplest form, chromatin consists of DNA and a set of proteins called histones, arranged so that the DNA strand is wrapped around histone protein clusters. This basic chromatin structure can be modified in various ways to regulate access to the genetic information encoded in the DNA. Such regulation is critical for cellular function and development of the organism. As cells form gametes, they undergo a specialized type of cell division called meiosis. During meiosis, chromatin is regulated in specific ways to ensure proper development of the embryo. During meiosis in the nematode C. elegans, the chromatin structure of the single male X chromosome depends on an RNA-directed RNA polymerase called EGO-1. Here, we identify three more regulators of meiotic chromatin, the proteins CSR-1, EKL-1, and DRH-3. Our data suggest that these proteins collaborate with EGO-1 to ensure that paired chromosomes (autosomes and hermaphrodite X chromosomes) are regulated correctly and in a manner distinct from the male X chromosome. Our findings suggest that these four proteins participate in a mechanism to ensure proper gene expression for gamete formation.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans.

          Genetic interference mediated by double-stranded RNA (RNAi) has been a valuable tool in the analysis of gene function in Caenorhabditis elegans. Here we report an efficient induction of RNAi using bacteria to deliver double-stranded RNA. This method makes use of bacteria that are deficient in RNaseIII, an enzyme that normally degrades a majority of dsRNAs in the bacterial cell. Bacteria deficient for RNaseIII were engineered to produce high quantities of specific dsRNA segments. When fed to C. elegans, such engineered bacteria were found to produce populations of RNAi-affected animals with phenotypes that were comparable in expressivity to the corresponding loss-of-function mutants. We found the method to be most effective in inducing RNAi for non-neuronal tissue of late larval and adult hermaphrodites, with decreased effectiveness in the nervous system, in early larval stages, and in males. Bacteria-induced RNAi phenotypes could be maintained over the course of several generations with continuous feeding, allowing for convenient assessments of the biological consequences of specific genetic interference and of continuous exposure to dsRNAs.
            • Record: found
            • Abstract: found
            • Article: not found

            Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing.

            RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans.

              We sequenced approximately 400,000 small RNAs from Caenorhabditis elegans. Another 18 microRNA (miRNA) genes were identified, thereby extending to 112 our tally of confidently identified miRNA genes in C. elegans. Also observed were thousands of endogenous siRNAs generated by RNA-directed RNA polymerases acting preferentially on transcripts associated with spermatogenesis and transposons. In addition, a third class of nematode small RNAs, called 21U-RNAs, was discovered. 21U-RNAs are precisely 21 nucleotides long, begin with a uridine 5'-monophosphate but are diverse in their remaining 20 nucleotides, and appear modified at their 3'-terminal ribose. 21U-RNAs originate from more than 5700 genomic loci dispersed in two broad regions of chromosome IV-primarily between protein-coding genes or within their introns. These loci share a large upstream motif that enables accurate prediction of additional 21U-RNAs. The motif is conserved in other nematodes, presumably because of its importance for producing these diverse, autonomously expressed, small RNAs (dasRNAs).

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2009
                August 2009
                28 August 2009
                : 5
                : 8
                : e1000624
                Affiliations
                [1 ]Department of Biology, Syracuse University, Syracuse, New York, United States of America
                [2 ]Biology Department and Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
                The University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: XS WGK EMM. Performed the experiments: XS XX AF EMM. Analyzed the data: XS XX AF WGK EMM. Contributed reagents/materials/analysis tools: WGK EMM. Wrote the paper: XS EMM.

                Article
                09-PLGE-RA-0015R3
                10.1371/journal.pgen.1000624
                2726613
                19714217
                b5081c3f-6d98-48ba-93fe-6c6ad7e1bc47
                She et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 6 January 2009
                : 31 July 2009
                Page count
                Pages: 15
                Categories
                Research Article
                Cell Biology/Gene Expression
                Developmental Biology/Developmental Molecular Mechanisms
                Developmental Biology/Germ Cells
                Developmental Biology/Stem Cells
                Genetics and Genomics/Chromosome Biology
                Genetics and Genomics/Epigenetics
                Molecular Biology/Chromatin Structure
                Molecular Biology/Histone Modification

                Genetics
                Genetics

                Comments

                Comment on this article

                Related Documents Log